Главная страница

Элементарная биометрия. Книга служит элементарным пособием для практического применения вариационной статистики в биологических исследованиях


Скачать 3.04 Mb.
НазваниеКнига служит элементарным пособием для практического применения вариационной статистики в биологических исследованиях
АнкорЭлементарная биометрия.doc
Дата04.01.2018
Размер3.04 Mb.
Формат файлаdoc
Имя файлаЭлементарная биометрия.doc
ТипКнига
#13667
страница18 из 32
1   ...   14   15   16   17   18   19   20   21   ...   32

Ранговая корреляция


Помимо рассмотренных выше параметрических показателей связи в биометрии применяются и непараметрические. Обычно их используют при сильных отклонениях изучаемого распределения от нормального (или сомнениях на этот счет), а также в тех случаях, когда требуется оценить зависимость между качественными или полуколичественными признаками, точное количественное измерение которых затруднено (оценки в баллах или других условных единицах). Если варианты выборки могут быть упорядочены по степени выраженности их свойств, для измерения степени сопряженности меж­ду ними можно воспользоваться непараметрическим показате­лем связи – ранговым коэффициентом корреляции Спирмена:

,

где dразность между рангами сопряженных значений призна­ков х и y;

nобъем вы­борки.

Этой формулой следует пользоваться в тех случаях, когда выборки не содержат повторяющихся вариант, когда все ранги выражены разными целыми числами. Если же исходные ряды содержат одинаковые значения, расчет корреляции приходится вести по другой формуле, включающей поправку на повторы (при этом одинаковым вариантам присваивается средний ранг):

,

где Tx,Ty – поправки на серии повторов для каждой выборки:

,

где t – число членов в каждой группе одинаковых вариант.

Поправки Tx, Ty учитывают k групп повторяющихся вариант.

Рассмотрим технику вычислений на примере изу­чения связи между оцененными в баллах численностью лисицы (х) и обилием мышевидных грызунов (у) (по годам наблюдений):





1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

х

2.6

2.1

2.3

2.3

1.6

2.2

3.0

2.1

1.5

2.2

у

3.0

2.4

3.6

2.9

3.7

3.3

4.0

2.1

1.0

3.5


Чтобы проверить наличие и определить силу этой связи, нужно упорядочить значения сопряженных признаков по сте­пени их выраженности, затем присвоить им ранги, обозначив значения порядковыми числами натурального ряда, и рассчитать коэффициент корреляции. Техника вычислений показана в таб­лице 15.

Таблица 15

Численность лисицы

в баллах, x

Обилие грызунов

в баллах, y

Ранги вариант

Разность

между

рангами, d

d2

Rx

Ry

1.5

1.0

1

1

0

0

1.6

3.7

2

6

−4.0

16.00

2.1

2.4

3.5

3

+0.5

0.25

2.1

2.1

3.5

2

+1.5

2.25

2.2

3.3

5.5

7

−1.5

2.25

2.2

3.6

5.5

8.5

−3.0

9.00

2.3

3.6

7.5

8.5

−1.0

1.00

2.3

2.9

7.5

4

+3.5

12.25

2.6

3.0

9

5

+4.0

16.00

3.0

4.0

10

10

0

0
















Σ = 59


В ряду значений признака x есть три пары одинаковых вариант, поэтому поправка будет равна: .

В ряду признакаyвсего одна пара одинаковых значений; поправка составит: = 0.5.

Находим величину  = 165.

Коэффициент ранговой корреляции составит:

 = 0.638.

Если воспользоваться формулой без поправок, результат будет несколько иным:

 = 0.642.

Статистическая ошибка и критерий достоверности отличия коэффициента корреляции от нуля вычисляются по формулам:

 = 0.272,

tr = rSmr= 0.638 / 0.272 = 2.34.
Величина критерия (2.34) несколько выше критического значения (2.31) для уровня значимости α = 0.05 и числа степеней свободы df= n− 2 = 8 (табл. 6П). Казалось бы, это дает ос­нование отвергнуть нулевую гипотезу (rS= 0) и с вероятностью P = 95% констатировать достоверность установленной связи. Однако при небольших выборках статистические свойства коэффициента Спирмена не очень «хороши» и для оценки значимости корреляции лучше воспользоваться специально подготовленной таблицей 16П, аналогичной рассмотренной выше таблице 15П.

Чтобы полученный коэффициент можно было счи­тать достоверно отличным от нуля, он должен превышать табличное значение при данном n. В нашем случае (n= 10, α= 0.05) коэффициент r= 0.638 ниже табличного r= 0.64, следовательно, значимо от нуля не отличается. Зависимость численности лисицы и грызунов по приведенным данным достоверно не прослеживается.
1   ...   14   15   16   17   18   19   20   21   ...   32


написать администратору сайта