Главная страница
Навигация по странице:

  • _______________________

  • Логика эпохи Возрождения и Нового времени

  • Логика в России

  • Математическая логика

  • 1 См.

  • pq ^ r .

  • Логика. Конспект книги


    Скачать 1.72 Mb.
    НазваниеКонспект книги
    АнкорЛогика.docx
    Дата05.02.2018
    Размер1.72 Mb.
    Формат файлаdocx
    Имя файлаЛогика.docx
    ТипКонспект
    #15224
    страница24 из 29
    1   ...   21   22   23   24   25   26   27   28   29

    Логика в средние века

    Средневековая логика (VI-XV вв.) изучена еще недостаточно. В средние века теоретический поиск в логике развернулся главным образом по проблеме истолкования природы общих понятий. Так называемые реалисты, продолжая идеалистическую

    _______________________
    'См.: Ленин В. И. Полн. собр. соч. Т. 29. С. 326.

    2См.: Бочаров В. А. Аристотель и традиционная логика. М., 1984; Субботин А.А. Традиционная и современная формальная логика. М., 1969.

    383
    линию Платона, считали, что общие понятия существуют реально, вне и независимо от единичных вещей. Номиналисты же, напротив, считали, что реально существуют только единичные предметы, а общие понятия - лишь имена, названия для них. Оба взгляда были неправильными, однако номинализм был ближе к материализму.

    Сформулируем основные проблемы, которые разрабатывались в средневековой логике: проблемы модальной логики, анализ выделяющих и исключающих суждений, теория логического следования, теория семантических парадоксов (логики в средние века усиленно занимались их анализом, например, парадокса “Лжец”, и предлагали разнообразные решения).

    Теоретические источники средневековой арабоязычной логики следует искать в логике Аристотеля. Основателем арабоязычной логики считается сирийский математик аль-Фараби (ок. 870-950), который прокомментировал весь аристотелевский “Органон”. Логика аль-Фараби направлена на анализ научного мышления. Имисследуются вопросы и теории познания, и грамматики. У него, как и у Аристотеля, метод мышления соотносится с реальными отношениями и связями бытия. Аристотель был “духовным наставником” аль-Фараби в области логики.

    Аль-Фараби выделяет в логике две ступени: первая охватывает представления и понятия, вторая — теорию суждений, выводов и доказательств.

    Сирийская логика послужила посредником между античной и арабоязычной наукой. Историки логики признают влияние логики арабов на развитие европейской логики в средние века.

    Таджик Ибн-Сина (Авиценна) (ок. 980-1037) комментирует Аристотеля и сам пытается развить логику. Авиценне известна зависимость между категорическими и условными суждениями, выражение импликации через дизъюнкцию и отрицание, т. е. формула

    q) ( q)

    В учебнике “Логика” Ибн-Сина стремился обобщить аристотелевскую силлогистику. Вначале Ибн-Сина пользовался комментариями к работе Аристотеля “Метафизика”, сделанными аль-Фараби.

    Другим крупным арабским аристотеликом был Ибн-Рушд (Аверроэс) (1126-1198). Он также тщательно комментировал

    384
    логические тексты Аристотеля. Ибн-Рушд развивал понимание модальностей.

    Во второй половине ХIII в. самым популярным руководством по логике было “Summulae logicales” Петра Испанского (прибл. 1220-1277). В трактате Петра Испанского имеется ряд новых идей (по сравнению с мегаро-стоической школой), относящихся к логике высказываний.

    Логику разрабатывали также англичанин Дунс Скот, испанец Раймунд Луллий, англичанин Вильям Оккам, француз Жан Буридан, немец Альберт Саксонский.

    Логика эпохи Возрождения и Нового времени'

    В XV-XVI вв., т. е. в эпоху Возрождения, происходит усиление эмпирических тенденций в логике и методологии научного знания. Идет бурное развитие науки, делаются великие географические открытия, наука сближается с практикой. Все большую роль в других науках начинает играть математика.

    В разработку материалистических основ логики большой вклад внес Фрэнсис Бэкон (1561-1626) - родоначальник английского материализма. Выступая против крайностей рационализма и эмпиризма, Бэкон говорил, что ученый не должен уподобляться ни пауку, ткущему паутину из самого себя, ни муравью, который только собирает и накапливает материал, а должен, подобно пчеле, собирать и перерабатывать материал, преобразуя его в научную теорию.

    Ф. Бэкон разработал основы индуктивной логики в своем знаменитом произведении “Новый органон”. Как показывает само заглавие, Бэкон противопоставляет свою логику логике Аристотеля. Его “Новый органон” должен заменить старый аристотелевский “Органон”. Но Бэкон был несправедлив по отношению к Аристотелю, он не знал подлинного Аристотеля, знакомился с его работами в изложении средневековых философов. Заслугой Бэкона является разработка им вопросов научной индукции, целью которой является раскрытое причинных связей между явлениями

    _______________________

    'См.: Попов П. С., Стяжкин Н.И. Развитие логических идеи в эпоху Возрождения. М., 1983; Попов П.С. История логики Нового времени. М., I960.

    385

    окружающего мира. Ф. Бэкон разработал методы определения причинной связи между явлениями: метод сходства, метод различия, соединенный метод сходства и различия, метод сопутствующих изменений, метод остатков. Далее, в XIX в., разработка вопросов научной индукции была продолжена Дж. Ст. Миллем и другими логиками.

    Французский философ Рене Декарт (1596-1650) сформулировал четыре правила, которыми надо руководствоваться при всяком научном исследовании. Его последователи Арно и Николь в 1662 г. написали книгу “Логика, или Искусство мыслить” (“Логика Пор-Рояля”), в которой поставили задачу освобождения логики Аристотеля от внесенных в нее поздними логиками схоластических искажений.

    Немецкий ученый и философ И. Кант (1724-1804), автор космогонической гипотезы происхождения небесных тел (известной в науке под названием гипотеза Канта - Лапласа) различал два типа логики - обычную, формальную, которая изучает формы понятия, суждения и умозаключения, отвлекаясь от их содержания, и трансцендентальную, которая исследует в формах мышления то, что сообщает знанию априорный характер и обусловливает возможность всеобщих и необходимых истин. Согласно трансцендентальной логике, логическое мышление, направленное на предметы опыта, дает достоверное и объективное знание.

    Кант считал, что знание выражается в форме суждения. Он различал аналитические суждения, которые, не давая нового знания, раскрывают в предикате знание, уже заложенное в субъекте (например: “Все тела протяженны”), и синтетические суждения, в которых знание, заключенное в предикате, синтезируется со знанием, содержащимся в субъекте (например: “Некоторые тела тяжелы”). В свою очередь, синтетические суждения Кант делил на апостериорные, в которых связь субъекта с предикатом основывается на опыте (например: “Некоторые люди чернокожие”), и априорные, в которых эта связь мыслится как предшествующая опыту и даже являющаяся его предпосылкой (например, суждение, выражающее закон причинности: “Все, что случится, имеет причину”).

    386
    Априорные синтетические суждения Канта вызвали большую дискуссию среди логиков и философов, продолжающуюся до сих пор.

    Одним из вкладов Канта в логику является отличение им логического основания и логического следствия от реальной причины и реального следствия.

    Самый знаменитый представитель немецкой классической философии - Г. В. Ф. Гегель (1770-1831). Он критиковал Канта, в том числе и по вопросам логики, но его критика осуществлялась с позиций идеалистической диалектики. Логика у Гегеля совпадает с диалектикой. Поэтому, критикуя формальную логику, он отвергает последнюю. Гегель, говоря об отражении в мышлении понятий движения объективного мира, объективный мир понимал идеалистически, а именно как инобытие абсолютной идеи. Критику законов формальной логики Гегель дал во второй книге своего труда “Наука логики” в разделе “Учение о сущности”.

    Рациональное зерно философии Гегеля - диалектика. Он разрабатывал проблемы диалектики мышления и диалектической логики.

    Логика в России

    Русские логики, такие, как П. С. Порецкий, Е. Л. Буницкий и многие другие, внесли существенный вклад в развитие логики на уровне мировых логических концепций.

    Первый трактат по логике появился в России в Х в. Это был перевод философской главы из “Диалектики” византийского писателя VII в. Иоанна Дамаскина, которая представляла собой изложение работ Аристотеля и его комментариев. Первое систематическое учебное пособие по логике, включавшее аристотелевскую логику и отдельные идеи Гоббса, было подготовлено во второй половине XVII в. Тогда же в России начали распространяться отдельные идеи математической логики.

    В XVIII в. в России появляются оригинальные логические результаты. Первым их добивается Михаил Васильевич Ломоносов (1711-1765). Он вносит существенные изменения в традиционную силлогистику, предлагая свою классификацию умозаключений,

    387

    отграничивает суждение от грамматического предложения и др. Дмитрий Сергеевич Аничков (1733-1788) в трактате “Заметки по логике, метафизике и космологии” (“Annotationes in logicam, metaphisicam et cosmologiam”) исследовал модальные суждения, подразделяя их на четыре вида - необходимые, невозможные” возможные и не невозможные, сформулировал систему правил для ведения диспутов.

    Философ-материалист Александр Николаевич Радищев (1749-1802) одним из первых в мировой литературе поставил проблему необходимости логического анализа отношений, которого нет ни в логике Аристотеля, ни в логике средневековых схоластов. Он писал о суждениях, что они представляют собой сравнение двух понятий или познание отношений, существующих между вещами. А. Н. Радищев дает следующую классификацию умозаключений:'

    1) “рассуждение” (т. е. силлогизм);

    2) “уравнение”, т. е. умозаключения равенства, основанные на следующей аксиоме: равные и одинаковые вещи состоят в равном или одинаковом союзе или отношении;

    3) “умозаключения по сходству”.

    Русские видные публицисты В. Г. Белинский (1811-1848), А. И. Герцен (1812-1870), Н. Г. Чернышевский (1828-1889), Н. А. Добролюбов (1836-1861) активно интересовались философскими вопросами, в том числе проблемами логики. Белинский предостерегал от логических ошибок в ходе доказательства тезиса. А. И. Герцен выдвигал лозунг гармонического сочетания теоретического мышления и практической деятельности. Н. Г Чернышевский утверждал, что понятие относительности знания не означает, что оно иллюзорно или необъективно, а лишь указывает на его незаконченность.

    Крупнейшими русскими логиками XIX в. были Михаил Иванович Каринский (1840-1917) и его ученик Леонид Васильевич Рутковский (1859-1920), основные логические работы которых посвящены классификации умозаключений.

    _____________________

    1См.: Стяжкин Н. И., Силаков В. Д. Краткий очерк истории общей и математической логики в России. М., 1962. С. 15.

    388

    Основной замысел логической теории Карийского можно характеризовать как стремление построить аксиоматико-дедуктивную систему логики, исходя из основного отношения равенства (т. е. “тождества”), и в ней описать дедуктивные и индуктивные умозаключения, не используя элементов строгой формализации. Каринский в этой концепции примыкает к идеям Джевонса, что отметили уже его современники.

    Структура умозаключения, по Карийскому, такая. Из двух посылок, имеющих структуру (1) и (2), делается заключение (3).

    А находится в отношении R к В. (1)

    В тождествен с С. (2)

    А находится в отношении R к С. (3)

    Приведем примеры.

    Москва находится восточнее Парижа.

    Париж - столица Франции.

    Москва находится восточнее столицы Франции.

    Самара находится западнее озера Байкал.

    Озеро Байкал - самое глубокое озеро мира.

    Самара находится западнее самого глубокого озера мира.

    Все выводы М. И. Каринский делит на две большие группы: 1) выводы, основанные на “сличении субъектов”, и 2) выводы, основанные на “сличении предикатов” (при этом смысл терминов “субъект” и “предикат” не совпадает с соответствующим им традиционным пониманием). Основанием выводов является тождество (или соответственно различие) “субъектов” или “предикатов”. К этим двум большим группам, по мнению Карийского, можно отнести все виды умозаключений и, кроме них, еще и гипотезу.

    Известный историк логики Н. И. Стяжкин, исследуя логические идеи М. И. Карийского, пришел к выводу, что Каринский стремился охватить своей классификацией все виды умозаключений, встречающиеся в практике мышления. Но поставленная задача оказалась шире, чем принятые Каринским и положенные в основу его теории предпосылки. Она осталась нерешенной.

    Леонид Васильевич Рутковский (1859-1920) - автор работы “Основные типы умозаключений” (1888). Если Каринский

    389
    пытался построить теорию выводов, используя лишь отношение тождества и сводя к нему все другие отношения, то Рутковский считает возможным признать равноправными с отношением тождества и другие отношения, например, отношения сходства, сосуществования. Так как существует многообразие отношений, поэтому имеется и многообразие видов логических выводов (т. е. видов умозаключений). Умозаключения делятся им на интенсивные (т. е. рассматриваемые в логике содержания) и экстенсивные (рассматриваемые в логике объема).

    Рутковский делит все выводы на две основные группы. Первая группа — выводы подлежащих (т. е. выводы по объему) — распадается на три вида:

    а) традукцию (выводы сходства, тождества, условной зависимости);

    б) индукцию (полную и неполную);

    в) дедукцию (гипотетическую и негипотетическую).

    Вторая группа выводов - выводы сказуемых (по содержанию) - распадается на выводы “продукции” (разделительный силлогизм, выводы о совместности, современности предметов и др.), “субдукции” (выводы при классификациях и упорядочении предметов и др.), “эдукции” (отнесение предмета к виду его класса, заключения математической вероятности и др.).

    Аксиома “продукции” такова: “Из того, что предмет имеет признак В, следует, что этот же предмет имеет и признак С, т. к. признак В неизменно сосуществует с признаком С”'.

    Краткий анализ работ М. И. Каринского и Л. В. Рутковского показывает, что их оригинальные работы по классификации видов умозаключений способствовали прогрессивному развитию традиционной логики в XIX в.

    Оригинальными были идеи казанского логика Николая Александровича Васильева (1880-1940). Его идеи возникли в результате изучения проблем традиционной логики, но их значение оказалось столь большим, что оказало влияние на развитие математической логики. Он вслед за другим русским логиком С. О. Шатуновским высказал идею о неуниверсальности закона

    ________________________

    'Рутковский Л. В. Основные типы умозаключений // Цит. по: Избранные труды русских логиков XIX в. М., 1956. С. 312.

    390
    исключенного третьего. Если Шатуновский пришел к этой идее в результате тщательного изучения особенностей математического доказательства применительно к бесконечным множествам, то Н. А. Васильев - в результате изучения частных суждений, рассматриваемых в традиционной логике. Основными работами Н. А. Васильева являются следующие: “О частных суждениях, о треугольнике противоположностей и о законе исключенного четвертого” (1910), “Воображаемая (неаристотелева) логика” (1912)' и “Логика и металогика”. Н. А. Васильев подкреплял свои концепции формальной аналогией с неевклидовой геометрией Н. И. Лобачевского. Не все современники Васильева оценили его идеи, хотя некоторые из них считали, что он написал “остроумнейшую работу”. Логические идеи Васильева можно рассматривать, как некоторые предшествующие мысли (развитые далее в конструктивной и интуиционистской логиках) о неприменимости принципа исключенного третьего для бесконечных множеств. Васильев, кроме того, рассматривает условия, при которых представляется возможным оперировать с противоречивыми высказываниями внутри непротиворечивой логической системы.

    Математическая логика

    В XIX в. появляется математическая логика. Немецкий философ Г. В. Лейбниц (1646-1716) - величайший математик и крупнейший философ XVII в. - по праву считается ее основоположником, Лейбниц пытался создать универсальный язык, с помощью которого споры между людьми можно было бы разрешать посредством вычисления. При построении такого исчисления Лейбниц исходил из своего “Основного принципа разума”, который гласил, что во всех истинных предложениях, общих или частных, с необходимостью или случайно предикат содержится в субъекте. Он хотел всякому понятию дать числовую характеристику и установить такие правила оперирования с этими числами, которые позволили бы не только доказывать вообще

    _________________________

    'См.: Васильев Н. А. Воображаемая логика. М., 1989; Бажанов В. А. Николай Александрович Васильев. М., 1988. (Эта книга- первая научная биография Н. А. Васильева, написанная на основе ранее неизвестных и непубликовавшихся материалов).

    391

    все истины, доступные логическому доказательству, но и открывать новые. В последнем обстоятельстве он видел особую слугу своей всеобщей характеристики. Лейбниц говорит о как о чудесном общем языке, имеющем свой словарь (т. е. характеристические числа, отнесенные к понятиям) и свою грамматику (правила оперирования с этими числами). Лейбниц хотел построить арифметизированное логическое исчисление в некоторой вычисляющей машины (алгоритма). Однако этого ему сделать не удалось.

    В этой концепции Лейбница неприемлемо прежде всего что все содержание наших понятий якобы может быть выражено их характеристическими числами. Несостоятельным было и представление Лейбница о том, что человеческое мышление может быть полностью заменено вычисляющей машиной. ..

    Лейбниц полагал, что математику можно свести к логике, а логику считал априорной наукой. Сторонников такого обоснования математики называют логицистами — представителями субъективно-идеалистического направления (считающего первичным сознание человека) в обосновании математики.

    Лейбниц является предшественником логицизма в том смысле, что он предложил сведение математики к логике и математизацию логики: построение самой логики как некоторой арифметики или буквенной алгебры. Но Лейбниц был предшественникам логицизма и в том, что пытался создать арифметизированное логическое исчисление, о котором мы говорили.

    Покажем, как это делал Лейбниц. Возьмем такой категорический силлогизм:

    +70, -30 +10, -3

    Всякий мудрый есть благочестивый.

    +70, -33 +8, -11

    Некоторые мудрые богаты.

    +8, -11 +10, -3

    Некоторые богатые благочестивы.

    392

    Сверху над понятием написан выбранный наудачу правильный (по Лейбницу) набор характеристических чисел для терминов посылок. Истинность общеутвердительного суждения “Все S суть Р” (первая посылка) выражается тем, что обе характеристики субъекта делятся на соответствующие характеристики предиката, т. е. 70 (точно, без остатка) делится на 10, а - 33 делится на - 3, и числа, стоящие на диагоналях, - взаимно простые, т. е. + 70 и - 3 так же, как

    -33 и + 10, взаимно простые числа. Истинность частноутвердительного суждения, по Лейбницу, должна выражаться таким правилом: числа, стоящие на диагоналях, должны быть взаимно простыми, т. е. не иметь общих делителей, кроме единицы.

    +70,-33 +8,-11

    Посылка “Некоторые мудрые богаты” имеет такие числа:

    т. е. на обеих диагоналях стоят взаимно простые числа.



    И заключение этому правилу также удовлетворяет, ибо на диагоналях стоят взаимно простые числа:



    Истинность общеотрицательного суждения “Ни одно S не есть Р” у Лейбница выражалась тем, что по крайней мере на одной диагонали стоят не взаимно простые числа. Истинность частноотрицательного суждения выражалась тем, что по крайней мере одна из характеристик субъекта не делится на соответствующую характеристику предиката.

    393

    Чтобы воспользоваться исчислением Лейбница, нужно рассуждение облечь в форму силлогизма и посмотреть, правильный он или неправильный. Однако построенная Лейбницем система удовлетворяла этому требованию только в применении к правильным, по Аристотелю, построенным силлогизмам. Автором в стоящего учебника доказано, что все 19 правильных, по Аристотелю, модусов силлогизма окажутся правильными и по критерию Лейбница. Но в отношении неправильных модусов категорического силлогизма Аристотеля дело обстоит по-иному. Всегда можно построить такой пример, когда при разных правильных набоpax числовых характеристик для посылок получаются разные оценки заключения: в одних случаях оно оказывается истинным, в других - ложным.

    Исчисление Лейбница, таким образом, не выдержало проверки, что, конечно, заметил и сам Лейбниц, перешедший в дальнейшем к построению буквенного исчисления по образцу алгебры. Но тоже неудачно.

    Однако в этих замыслах Лейбница не все было неверно. Сам по себе метод арифметизации в математической логике играет весьма существенную роль как вспомогательный прием. В нем состоит, например, сущность метода, с помощью которого известный австрийский математик и логик К. Гёдель доказал неосуществимость лейбницевой мечты о создании такой всеобщей характеристики, которая позволит заменить все человеческое мышление вычислениями.

    Ложной была именно метафизическая идея Лейбница о сведении всего человеческого мышления к некоторому математическому исчислению. Поэтому были ложны и вытекающие из нее следствия.

    Интенсивное развитие математическая логика получила в работах Д. Буля, Э. Шрёдера, С. Джевонса, П. С. Порецкого и других логиков.

    Английский логик Джордж Буль (1815-1864) разрабатывал алгебру логики - один из разделов математической логики. Предметом его изучения были классы (как объемы понятий), соотношения между ними и связанные с этим операции. Буль переносит на логику законы и правила алгебраических действий.

    394
    В работе “Исследование законов мысли”', которая оказала большое влияние на развитие логики. Буль ввел в логику классов в качестве основных операций сложение (“+”), умножение (“ * ” или пропуск знака) и вычитание (“-”). В исчислении классов сложение соответствует объединению классов, исключая их общую часть, а умножение - пересечению. Вычитание Буль рассматривал как действие, противоположное (opposite) сложению, - отделение части от целого, то, что в естественном языке выражается словом “кроме” (except).

    Будь ввел в свою систему логические равенства, которые он записывал посредством знака “ = ”, соответствующего связке “есть”. Суждение “Светила суть солнца и планеты” в виде равенства им записывается так: х = у + z, откуда следует, что х - z =у. Согласно Булю, в логике, как и в алгебре, можно переносить члены из одной части равенства в другую с обратным знаком. Будь открыл закон коммутативности для вычитания: х-у = -у+х и закон дистрибутивности умножения относительно вычитания: z(x - у} = zx - zy. Он сформулировал общее правило для вычитания: “Если от равных вычесть равные, то остатки будут равными. Из этого следует, что мы можем складывать или вычитать равенства и употреблять правило транспозиции точно так же, как в общей алгебре”2.

    Предметом исследования ученого были также высказывания (в традиционной логике их называют суждениями). В исчислении высказываний, по Булю, сложение (“ + ”) соответствует строгой дизъюнкции, а умножение (“ * ” или пропуск знака) - конъюнкции.

    Чтобы высказывание записать в символической форме, Буль составляет логическое равенство. Если какой-либо из терминов высказывания не распределен он вводит термин V для обозначения класса, неопределенного в некотором отношении. Для того чтобы выразить частноотрицательное суждение, например: “Некоторые люди не являются благоразумными”, Буль сначала представляет его в форме: “Некоторые люди являются неблагоразумными”, а затем выражает в символах обычным способом.

    ______________________

    'См.: Boole George. An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logik and Probabilities. London, 1854.

    2Boole George. An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logik and Probabilities. London, 1854. P. 36.

    395
    По Булю, существует три типа символического выражения суждений: Х=VY(только предикат не распределен):

    Х= Y (оба термина - субъект и предикат - распределены);

    VX = VY (оба термина не распределены).

    Диалектика соотношения утверждения и отрицания в понятиях и суждениях у Буля такова: без отрицания не существует утверждения и, наоборот, во всяком утверждении содержится отрицание. Утверждения и отрицания связаны с универсальным классом: “Сознание допускает существование универсума не априори, как факт, не зависящий от опыта, но либо апостериори, как дедукцию из опыта, либо гипотетически, как основание возможности утвердительного рассуждения”'.

    Различая живой разговорный язык и “язык” символический, Буль подчеркивал, что язык символов - лишь вспомогательное средство для изучения человеческого мышления и его законов.

    Немецкий математик Эрнст Шредер (1841-1902) собрал и обобщил результаты Буля и его ближайших последователей. Он ввел в употребление термин “Logikkalkul” (логическое исчисление), новые по сравнению с Булем символы. В основу исчисления классов он положил не отношение равенства, как это было у Буля, а отношение включения класса в класс, которое обозначал как а b. Знак “ + ” Буль использовал для обозначения объединения классов, исключая их общую часть, т. е. симметрическую разность (см. рис. 26), а у Шредера знак “+” обозначает объединение классов без исключения их общей части.
    Рис. 26

    ____________________

    'Boole George. An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logik and Probabilities. London, 1854. P. 85.

    396
    Пропуском знака Шрёдер обозначает операцию пересечения классов, например, ab.

    Во взглядах Э. Шрёдера на отрицание можно отметить много интересного и нового по сравнению со взглядами Буля. Под отрицанием а1, класса а Шрёдер понимает его дополнение до 11.

    Если классов больше двух, то Шрёдер оперировал с ними по сформулированным им правилам. Правило 1: если среди сомножителей некоторого произведения находятся такие, из которых один является отрицанием другого, то произведение “исчезает”, т. е. равно 0. Например, abc • ab1 cd1 = 0, так как имеется b и b1,.

    Правило 2: если среди членов некоторой суммы находится хотя бы один, который оказывается отрицанием другого, то вся сумма равна 1:

    a+b+c1 +a+c+d1 =1.

    Значительное внимание Шрёдер уделил анализу структуры отрицательных суждений. Отрицательную частичку он прилагает к предикату, т. е. вместо “А не есть В” он берет “А есть не-В”, Так, суждение “Ни один лев не является травоядным”, если следовать идеям Шрёдера, надо заменить на суждение “Все львы являются нетравоядными”.

    Класс а1, как отрицание класса а Шрёдер считает очень неопределенным. И в доказательство этой мысли приводит такой пример. Понятие “несражающийся” (в армии) охватывает: саперов, полковых ремесленников, служащих лазарета, врачей, которые относятся к армии, но не сражаются.

    Опираясь на законы де Моргана, Шрёдер проводит анализ языка разговорной речи. Выражение с а1,b1, в речи означает, что “каждое с есть не- а и (одновременно) не-b”. Для него можно выбрать другое выражение: “Каждое с не есть ни a, ни b”. Это конъюнктивное суждение, примером которого может быть: “Каждая рыба - не птица и не млекопитающее”. Другое суждение: “Никакая рыба не есть птица и млекопитающее” - означает в символическом виде с (аb)1,, что эквивалентно, на основании правила де Моргана,

    ___________________

    1См.: Schroder E. Vorlesungenuber die Algebra der Logic. Bd. 1. Leipzig, 1890. S. 302.

    397
    с a1, +b1. Так называемое отрицательное по связке суждение “ни а, ни b не есть с” представляется в виде а + b c1) .

    Шрёдер формулирует правила (или требования) научной классификации:

    1. Между родом и суммой его видов должно быть тождество.

    2. Все виды должны быть дизъюнктивными, т. е. должны исключать друг друга и попарно в произведении давать 0.

    3. Для расчленения рода на виды должно быть одно основание. Используя отрицание. Шредер показал, как классифицируемый род делится на виды и подвиды.

    В логическом исчислении, доведенном до наибольшей простоты, Шредер признает три основных действия: сложение (трактуя его как нестрогую дизъюнкцию), умножение и отрицание. Однако вычитание он считает небезусловно выполнимой операцией.

    Автор данного учебника признает вполне приемлемой в логике классов операцию вычитания классов. Но понимает ее принципиально иначе, чем Буль и Шредер. Буль и Шредер считали, что в разности а - bb должно полностью входить в а, если же b > а или а и b - несовместимы, то операция вычитания невыполнима. В отличие от Буля и Шредера мы допускаем возможной (т. е. выполнимой) разность всяких двух классов а и b, из которых b может и не быть частью а; в качестве следствий мы учитываем случаи вычитания, когда классы а и b являются пустыми или универсальными.

    Наиболее известные работы английского логика Стенли Джевонса (1835-1882) - “Principles of Science, a Treatise on Logic and Scientific Method” (London, 1874) и “Elementary Lessons in Logic, Deductive and Inductive” (London, 1870).

    В качестве логических операций Джевонс признавал конъюнкцию, нестрогую дизъюнкцию и отрицание и не признавал обратных логических операций - вычитания и деления. Классы он обозначал буквами А, В, С..., а их дополнения до универсального класса, обозначаемого 1, или их отрицания -соответственно курсивными буквами а, b, с... 0 обозначает у него нулевой (пустой) класс; связка в суждении заменяется знаком равенства.

    Большое значение Джевонс придавал принципу замещения (или подстановки), который формулируется им так: если только существует одинаковость, тождество или сходство, то все, что

    398
    верно об одной вещи, будет верно и о другой. Этот принцип играет важную роль в умозаключении. Для обозначения отношения одинаковости (или тождества) Джевонс употребляет знак “ = ”.

    Обозначив положительные и отрицательные термины соответственно через А и а, В и b, Джевонс записывает закон непротиворечия как Аа = 0. Критерием ложности заключения, по Джевонсу, является наличие в нем противоречия, т. е. утверждения и отрицания одного и того же положения, что записывается, например, как наличие Аа, Вb, АВСа.

    Джевонс считал, что утвердительные суждения можно представлять в отрицательной форме. Но он напрасно категорически заявлял, что имеются сильные основания в пользу того, чтобы употреблять все предложения в их утвердительной форме, а различие (т. е. отрицательные суждения) неспособно быть основанием умозаключения. Джевонс не отрицал, что утверждение и отрицание, сходство и различие, равенство и неравенство представляют пары одинаково основных отношений; но утверждал, что умозаключение возможно только там, где прямо находится или подразумевается утверждение, сходство или равенство, словом, какой-нибудь вид тождества.

    Согласно законам диалектики, тождество и различие являются двумя сторонами единого предмета или процесса. Отражение отношений тождества и различия, имеющихся в самих предметах действительного мира, находит свое выражение и в мышлении в формах умозаключений. Поэтому отбросить различие, выражающееся в отрицательных суждениях, и все свести только к тождеству, выражающемуся в утвердительных суждениях, нельзя, да и нет в этом необходимости. Единство противоположностей - тождества и различия - неразрывно.

    Интересны и оригинальны взгляды Джевонса на категорический силлогизм с двумя отрицательными посылками. Джевонс утверждает, что его принцип умозаключения ясно отличает случаи, когда оно оказывается правильным, от тех случаев, когда оно неправильно. Он приводит пример умозаключения:

    Все, что не металлично, не способно к сильному магнитному влиянию.

    Уголь не металличен.

    Уголь не способен к сильному магнитному влиянию.

    399

    Здесь из двух отрицательных посылок получается истинное отрицательное заключение. Джевонс считает; что там, где возможно подставлять тождественное вместо тождественного, допустим вывод заключения из двух отрицательных посылок.

    Джевонс внес значительный вклад в алгебру логики, особенно в проблему отрицания классов и отрицательных суждений.

    Следующий этап в развитии математической логики связан с именем русского логика, математика и астронома Платона Сергеевича Порецкого (1846-1907). Его работы' существенно обобщают и развивают достижения Буля, Джевонса и Шредера.

    Анализируя понятия, Порецкий различает две формы: форму, обладающую данным признаком, обозначаемую буквами а, b, с..., и форму, им не обладающую, обозначаемую а, b,с…, и т. д.2 Формы совместного обладания или необладания несколькими признаками записывает так: a,a1 ,b,b1 (без особого знака между буквами). Современное пересечение классов Порецкий называет операцией реализирования (умножения), обозначая ее “ • ”, а операцию объединения классов - абстрагированием (сложением), обозначая ее “ ? ”, т. е. знаком вопроса; 0 и 1 обозначают пустой класс и универсальный. Порецкий вводит операцию отрицания классов (отрицание а обозначается через а1,) - это дополнение к классу а. Для каждого данного а его отрицание, т. е. о,, может быть различно. Это определяется избранным универсальным классом. Так, если за 1, т. е. универсум, принять англичан, а за а класс артистов, то а1, означает англичан-не-артистов, но если 1 обозначает класс людей, то a1, обозначает людей-не-артистов и т. д.

    Заслуга Порецкого в том, что он рассматривал логические операции не только над отдельными логическими классами, но и над логическими равенствами. Порецкий считает, что если два класса состоят из одних и тех же предметов, т.е. имеют равные объемы и могут отличаться только формой, то они равны между собой. Соединяя равные классы знаком “ = ”, мы получаем логическое

    _______________________

    'См.: Порецкий П. С. Решение общей задачи теории вероятностей при помощи математической логики. Казань, 1887, и др.

    2Порецкий П. С. О способах решения логических равенств и об обратном способе математической логики. Казань, 1884. С. III.

    400
    равенство. Равенством логических классов русский логик называет полную их тождественность, т. е. одинаковость их логического содержания, считая, что все их различие может состоять только в способе их происхождения. Примером такого равенства является закон де Моргана: (m + n), = т1n1. Если классы а и b равны, то и их отрицания, т. е. классы а и b, также равны. По его мнению, отрицание всякого равенства приводит к новому равенству, тождественному первоначальному.

    По мнению Порецкого, операция отрицания неприменима к системам равенств. К соединению двух и более равенств в одно новое равенство применимы лишь две логические операции: сложение и умножение отдельных частей равенств, причем предварительно каждое отдельное равенство может быть в случае надобности заменено его отрицанием.

    В созданной им теории логики Порецкий подчеркивал взаимосвязь двух проблем: выведения следствия из заданной системы посылок и нахождения тех посылок, из которых данное логическое равенство может быть получено в качестве следствия. Несколько подробнее остановимся на методе нахождения всех простых следствий из данных посылок, который в теории логики получил название метода Порецкого - Блэйка (его предложил американский математик Блэйк' на основе работы Порецкого).

    Простым следствием из данных посылок называется дизъюнкция каких-либо букв или их отрицаний, являющаяся логическим следствием из этих посылок, и притом таким, которое не поглощается никаким более сильным следствием такого же вида. (Мы говорим, что а сильнее b, если из а следует b, но из b не следует а). Все простые следствия из данных посылок можно получить, выполнив преобразования следующих пяти типов:

    1) привести конъюнкцию посылок к конъюнктивной нормальной форме (КНФ). КНФ есть конъюнкция из дизъюнкции элементарных высказываний или их отрицаний, эквивалентная данному выражению, т. е. если есть импликация, то ее надо заменить на дизъюнкцию по формуле (а → b= b);

    _______________________

    'См.: Blake A. Canonical Expressions in Boolean Algebra. Chicago, 1938.

    401

    2) произвести все операции “отбрасывания”, т. е. члены вида a x (или а • х • ) можно исключить, так как этот член тождественно истинен;

    3) использовать законы выявления, т. е. формулы

    ах ^ b = ах ^ b ^ аb; или ax b = ax b ab;

    4) произвести все “поглощения” на основании законов поглощения:

    а ^ (a b) = а и а (а ^ b)= а;

    5) из всех повторяющихся членов оставить только один (на основании законов идемпотентности).

    В результате получится силлогистический многочлен, который будет содержать все простые следствия из данных посылок, и только простые следствия. Они интереснее, чем обычные логические следствия, так как зависят от меньшего числа пара метров (элементарных высказываний).

    Покажем это на конкретном примере. Из данных трех посылок, имеющих соответственно, формы (1) q, (2) p q и (3) r, требуется вывести все разные (неэквивалентные между собой) формы простых логических следствий. Для решения задачи выполним следующие операции:

    1. Соединяем посылки знаками конъюнкции и приводим выражение в КНФ:

    (q) ^ (p q) ^ r = () ^ (p q) ^ r

    или в другой записи

    pq ^ r.

    2. В полученной КНФ к членам 1 и 3 применяем закон выявления, получаем

    ^ pq ^ r = ^ pq ^

    Затем ко второму и четвертому членам снова применяем этот же закон.

    402
    ^ pq ^ r ^ = ^ pq ^ r^ ^ p

    3. Произведем операции “поглощения”. Первый член ( ) поглощается четвертым (), поэтому отбрасываем первый член, а второй член (pq) поглощается пятым членом (p). В результате этого получим

    ^ pq ^ r^ ^ p =r ^ ^ p

    Вывод: при данных посылках суждения rи р истинны, а суждение q ложно, т. е. если суждениями выражены некоторые события, то событие r и событие р наступят, а событие q не наступит.

    Исследования Порецкого продолжают оказывать стимулирующее влияние на развитие алгебраических теорий и в наши дни.

    В XX в. математическая логика развивалась в трудах Ч. С. Пирса и Дж. Пеано.

    Американский логик Чарльз Сандерс Пирс (1839-1914) внес существенный вклад в разработку алгебро-логических концепций и явился основоположником новой науки - семиотики (общей теории знаков). В работах Пирса содержится тенденция к расчленению семиотики на прагматику (анализирует отношение знака к его исследователю), семантику (выясняет отношение знака к обозначаемому им объекту) и синтактику (исследует взаимоотношения между знаками).

    Пирс пишет о том, что реальное можно определить как нечто, свойства которого независимы от того, что о них мыслят. Наиболее общим подразделением знаков он считал такие: изображения (icons), индексы (indices) и символы (symbols). Пирс предлагал классификацию знаков и по другим основаниям.

    Пирс предложил строить исчисление высказываний лишь на одной операции, этим предвосхитив результаты М. X. Шеффера (Шеффер также строил исчисление высказываний на одной операции, которая вошла в историю логики под именем ее создателя - штрих Шеффера). Единственной логической операцией Пирс предлагал считать отрицание нестрогой дизъюнкции.

    Пирсу принадлежат работа по логике “Studies in Logic” и другие.

    403

    Достижения Джузеппе Пеано (1858-1932), итальянского математика, явились переходным звеном от алгебры логики, в том виде, какой ей придали Буль, Шредер, Порецкий и Пирс, к современной форме математической логики. Основные результаты Пеано были опубликованы в пятитомном “Формуляре математики”'.

    Пеано ввел следующие, употребляющиеся и ныне, символы:

    а) “ ” - знак принадлежности элемента к классу;

    б) “” - знак включения одного класса в другой класс;

    в) “” - знак объединения классов;

    г) “” - знак для обозначения операции пересечения классов.

    Крупным вкладом Пеано в развитие аксиоматического метода явилась его система из пяти аксиом для арифметики натуральных чисел. На базе своей аксиоматики Пеано строит всю теорию натуральных чисел.

    На заключительном этапе своей научной деятельности Пеано приступил к систематическому изложению логики как особой. по его мнению, математической дисциплины.

    Далее развитие математической логики осуществлялось по многим направлениям, а также в проблемном плане. Это было обусловлено необходимостью дальнейшего освоения как классической и неклассической логик, так и возникшими трудностями в обосновании математики.

    Краткому освещению основных направлений в современной логике посвящены последующие разделы данной главы.

    1   ...   21   22   23   24   25   26   27   28   29


    написать администратору сайта