Логика. Конспект книги
Скачать 1.72 Mb.
|
§ 8. Положительные логики Положительные логики (сокращенно - ПЛ) - это логики, построенные без операции отрицания. Их можно разделить на два вида: 1) ПЛ в широком смысле слова, или квазипозитивные логики. Они построены без операции отрицания, но отрицание может быть выражено средствами их логических систем; 2) ПЛ в узком смысле слова. Они построены без операции отрицания, и отрицание не может быть выражено в их системах. ___________________________ 'См.: Фейс Р. Модальная логика. М., 1974. 2Cм.: Ивин А. А. Основания логики оценок. М., 1970; его же. Логика норм. М„ 1973. 3См.: Слинин. Я. А. Современная модальная логика. Л., 1976. 4См.: Чендов Б. С. Логика на научного познание. Серия “Логика и применения”. София, 1992. Т. 2. 438 Можно предложить классификацию ПЛ и по другому основанию: числу логических операций, на котором построена ПЛ. Квазипозитивными логиками, построенными на одной операции, являются логика, построенная на операции “штрих Шеффера” (антиконъюнкция), и логика, основанная на операции антидизъюнкции. Квазипозитивная логика, построенная на операции антидизъюнкции, которая соответствует сложному союзу “ни..., ни...” и обозначается аb (“ни а, ни b), таблично определена так:
Ряд квазипозитивных логик основан на двух операциях. ПЛ в узком смысле, основанными на одной операции, являются импликативная логика, основанная на операции импликации, и логика, построенная на операции эквиваленции. Ряд ПЛ основан на двух операциях: а) на импликации и конъюнкции; б) на дизъюнкции и конъюнкции; в) на импликации и дизъюнкции. ПЛ (в узком смысле) является подсистемой (частичной системой) более сильных логик - интуиционистской и классической. Все утверждения ПЛ имеют силу как в интуиционистской логике, так и в классической логике. Внутри самих ПЛ также имеются различные по силе системы. Так, импликативная логика, включающая две аксиомы, слабее, чем ПЛ, включающая, кроме этих двух, аксиомы, характеризующие конъюнкцию и дизъюнкцию. Аксиоматическое построение подтверждает это соотношение: самой сильной является классическая логика, слабее интуиционистская, еще слабее ПЛ. Общим для ПЛ в широком и узком смыслах является то, что среди логических констант этих систем нет операции отрицания. 439 Отличия этих систем следующие: 1) в квазипозитивных логиках операция отрицания выразима средствами этой логики, а в ПЛ в узком смысле операция отрицания не выразима; 2) квазипозитивные логики являются моделями классической логики, т.е. они эквивалентны классической логике высказываний, а ПЛ в узком смысле не эквиваленты классической логике, являясь ее подсистемами (частичными системами), следовательно, они слабее классической логики высказываний. Роль ПЛ в искусственных языках весьма значительна. Особенно это касается конструктивной логики А. А. Маркова, которая строится на иерархии языков. В алфавите языка Я1, нет отрицания, и в нем нельзя выразить отрицание, ибо нет импликации. Марковым был построен язык Я1, который хотя и узок, но приспособлен для описания работы нормальных алгоритмов. Этот язык пригоден для выражения некоторых отношений между словами, встречающимися в чистой семиотике и в теории алгоритмов. С помощью языка Я1, (языка без отрицания) можно дать описание работы различных алгоритмов - и в этом состоит важное значение языка без операции отрицания. Логическая система без операции логического отрицания находит свое применение при построении машинных программ. Но если взять искусственные языки - такие, как ФОРТРАН или КОБОЛ, которые позволяют воспользоваться высокоэффективным способом программирования, то в их состав, кроме логического сложения и логического умножения, входит и логическое отрицание, соответствующее частице “не” и обозначаемое знаком “ ”. Все инструкции о том, как произвести сборку замков, мебели, по использованию машин, инструментов, технических приборов и т. п. основаны на содержательном (не формализованном) использовании ПЛ. § 9. Паранепротиворечивая логика Эта логика представляет одно из направлений современной неклассической математической логики. Объективной основой появления паранепротиворечивых логик является стремление отразить средствами логики специфику мышления человека о 440 переходных состояниях, которые наряду с устойчивостью и относительным покоем наблюдаются в природе, обществе и познании. В природе и обществе происходят изменения, предметы и их свойства переходят в свою противоположность, поэтому нередки переходные состояния, промежуточные ситуации, неопределенность в познании, переход от незнания или неполного знания к более полному и точному. Действие законов двузначной логики - закона исключенного третьего и закона непротиворечия - в этих ситуациях ограничено или вообще исключено. На необщезначимость этих законов указывал еще Аристотель. Говоря о будущих единичных случайных событиях, по Аристотелю, нельзя считать суждение истинным или ложным, оно неопределенно. Закон непротиворечия утверждает, что два противоположных суждения не могут быть истинными в одно и то же время и в одном и том же отношении. Но в разное время они могут быть оба истинными. Аристотель писал: “Все изменяющееся необходимо должно быть делимым... необходимо, чтобы часть изменяющегося предмета находилась в одном (состоянии), часть - в другом, так как невозможно сразу быть в обоих или ни в одном”'. Вследствие неопределенности интервалов и неопределенности состояний изменяющегося предмета предполагается временная интервальная Паранепротиворечивая семантика, допускающая истинность как высказывания А, так и не-А. Кроме временных интервалов с переходными состояниями, наше мышление имеет дело с так называемыми нечеткими понятиями (нежесткими, расплывчатыми, размытыми –fuzzy), отражающими нежесткие множества, концепция которых предложена в 1965 г. американским математиком Л. Заде2. Все это обусловило необходимость и возможность появления паранепротиворечивых логик (paraconsistent logics) -логических исчислений, которые могут лежать в основе противоречивых формальных теорий. Противоречивые данные возникают на судебных заседаниях, в дискуссиях, полемике, при постановке диагноза болезни, в научных теориях (прежних и новых), в _____________________________ 'Аристотель. Физика // Соч.: в 4-х т. М., 1981.Т. 3. С.186-187. 2См.: Zadeh L. A. Fuzzy Sets// Information and Control. 1965. Vol.8. № 3. 441 ситуациях, связанных с решением нравственных проблем, в других сферах интеллектуальной деятельности. В связи с этим встала проблема создания информационной системы, работающей с противоречивыми данными. Предшественниками паранепротиворечивой логики как нового вида неклассичесиой формальной логики явились логики Н. А. Васильева и Я. Лукасевича. Как новый вид математической логики паранепротиворечивая логика разрабатывалась в работах польского логика Ст. Яськовского (1948) и бразильского математика Ньютона да Коста (начиная с 1958 г.) История паранепротиворечивой логики изложена бразильским логиком А. И. Аррудой в работе “Обзор паранепротиворечивой логики. Математическая логика в Латинской Америке”'. В паранепротиворечивых системах принцип (закон) непротиворечия лишен всеобщей значимости. Логике не присущи ни единство, ни абсолютность - эту мысль мы встречаем у многих современных логиков, в том числе у Н. да Косты. В статье, написанной специально для журнала “Философские науки”, “Философское значение паранепротиворечивой логики” Н. да Коста пишет: “Допустим, что имеющийся у нас язык дедуктивной теории Т содержит в себе символ отрицания. Т называют противоречивой (inconsistent) теорией, если и только если в Т имеются две теоремы, одна из которых есть отрицание другой; в противоположном случае Т считается непротиворечивой (consistent). Т считают тривиальной, если и только если все формулы (или все высказывания [sentences]) языка Т являются также теоремами Т; в противном случае мы называем Т нетривиальной... Система логики паранепротиворечива, если она может быть использована как логика, лежащая в основе противоречивых, но нетривиальных теорий”2. Н. да Коста полагает, что вместо стандартных теорий множеств могут быть использованы паранепротиворечивые теории множеств. Система паранепротиворечивой логики в общем случае должна удовлетворять следующим условиям: _____________________ 'См.: Arruda A. I. A Survey of Paraconsistent Logik: Mathematical Logik in Latin Americal (Ed. by Arruda A. I., Chuaqui R. and Da Casta N.C. A.) Dordrecht, 1980. P. 1-41. 2Философские науки. М., 1982. № 4. С. 117. 442 1) из двух противоречащих формул А и А в общем случае нельзя вывести произвольную формулу В; 2) дедуктивные средства классической логики должны быть максимально сохранены, поскольку они - основа всех обычных рассуждений. В первую очередь должен быть сохранен modus poaens, т. е. рассуждение по формуле ((а → b)^ а) → b. Паранепротиворечивая логика связана со многими видами неклассических логик: с модальной логикой (системой S5 К. И. Льюиса), с многозначными логиками, с релевантной логикой, где тоже не принимается принцип: из противоречия следует все, что угодно'. Исследование многозначных логик показало, что закон непротиворечия, т. е. формула , не является тавтологией в следующих системах: трехзначных логиках - Я. Лукасевича, Г. Рейхенбаха (для циклического и диаметрального отрицаний), Р. П. Гудстейна, Д. Бочвара (для внутреннего отрицания); т-значной логике Э. Л. Поста. Автор этого учебника исследовала 13 формализованных логических систем с 17 имеющимися в них видами отрицания и установила, что для 10 видов закон непротиворечия является тавтологией (доказуемой формулой), а для остальных 7 нет. Это обусловлено тем, что, кроме значений истинности - “истина” и “ложь”, в многозначных логиках имеется значение “неопределенно”. Но в классической, конструктивных и интуиционистской логиках от закона непротиворечия нельзя отказаться, ибо в этих логиках отражены жесткие ситуации “или - или” (“истина - ложь”), конструктивный процесс присутствует или его нет, одновременно того и другого не бывает. Поэтому классическая, интуиционистская, конструктивная и ряд других логик не годятся в качестве логик, которые могут быть основанием противоречивых, но нетривиальных теорий. Положительные логики также для этого не годятся, ибо в них нет операции отрицания. Некоторое современные логики (например, немецкий логик К. Вессель) не признают паранепротиворечивых логик. Построением паранепротиворечивых логических систем занимаются, однако, отечественные логики А. С. Карпенко, А. Т. Ишмурагов и др. Интересны и оригинальны статьи американского математика Н. Белнапа “Как нужно рассуждать компьютеру” (1976) и “Об ________________________ 'См.: Табаков Мартин. Логика и аксиоматика. София, 1986. 443 одной полезной четырехзначной логике” (1976), посвященные формализации общения с информационными системами, в которых содержится противоречивая информация. Белнап построил четырехзначную логику, значениями истинности которой являются следующие: Т - “говорит только Истину”; F - “говорит только Ложь”; None - “Не говорит ни Истины, ни Лжи”; Both -“говорит и Истину, и Ложь”'. Н. Белнап отмечает, что входные данные поступают в компьютер из нескольких независимых источников, и в таких условиях проявляется типичная особенность информационной ситуации - угроза противоречивости информации. Что в таком случае должен делать компьютер, особенно если в системе содержится необнаруженное противоречие? Свою четырехзначную логику Белнап и предлагает в качестве практического руководства в рассуждениях2. Итак, паранепротиворечивые логики демонстрируют возможность наличия очень сильных противоречивых, но нетривиальных (т. е. паранепротиворечивых) теорий. ___________________________ 'Белнап Н.. Стил Т. Логика вопросов и ответов. М., 1981. С. 214. 2'См.: там же. С. 208-215. 444 ЗАКЛЮЧЕНИЕ Цель познания в науке и повседневной жизни - получение истинных знаний и полноценное использование их на практике. Знание формальной логики и диалектики помогает предвидеть события и лучшим способом планировать деятельность, максимально предусматривать возможные последствия, выдвигать различные гипотезы, эффективнее обучать и самим обучаться, видеть “логику вещей”, т. е. объективную диалектику, умело вести дискуссии и полемику. Изучение логики желательно продолжить, прослушав ряд спецкурсов, самостоятельно изучив дополнительную литературу. Эти формы работы помогут студентам, изучившим основной курс формальной логики (как классической, так и многочисленных направлений неклассических логик, изложенных в последней главе), стать преподавателем логики в средней школе, лицее, гимназии и ином учебном заведении. Можно предвидеть, что потребность в таких преподавателях будет возрастать в связи с введением курса логики в средних учебных заведениях. В статье доктора философских наук В. А. Светлова “Нужна ли логика будущему учителю?” (вопрос, вынесенный в заголовок, носит в общем риторический характер) сформулированы некоторые перспективы дальнейшего изучения логики студентами педвузов. В. А. Светлов пишет: “Что же может дать логика для подготовки учителя? При самом умеренном ее изучении студент педагогического вуза за один-два семестра мог бы дополнительно к стандартному курсу освоить теоретически и научиться применять практически (по выбору): логику научного исследования, логические основы семантики и семиотики, логику научно-педагогической работы, логику принятия решения (в условиях определенности, неопределенности и риска), логику спора, логику общения (межличностных отношений), логику структурного 445 анализа сказок, мифов, художественных текстов, логику конфликтов (межличностных, политических, военных)”'. Помимо этих направлений будущим преподавателям логики можно посоветовать изучить материалы по методике преподавания логики и по истории логики. Интересным, перспективным направлением является анализ уже созданных и разработка новых программ для ЭВМ по курсу формальной логики - как традиционной (с элементами символической логики), так и символической логики2. Широкое применение логических знаний необходимо и при разработке обучающих программ для ЭВМ по различным школьным учебным дисциплинам (опыт составления разнообразных программ по математике, русскому языку, истории, иностранным языкам, географии и другим предметам имеется, и его предстоит изучить). Конкретное применение знаний формальной логики учителю потребуется и в вузе, и в школе при работе с понятиями и осуществлении логических операций с ними (определение, деление понятий, классификация, обобщение и ограничение). Знание темы “Суждение” поможет учителю и учащимся четко выявлять логическую структуру простых и сложных суждений, правильно производить отрицания суждений, работать с модальными суждениями. Мы надеемся, что запись сложных суждений с помощью логических союзов, которая очень нравится учащимся 3-7 и старших классов (о чем свидетельствуют многочисленные эксперименты со школьниками, изучавшими элементы логики под моим и под руководством студентов МПГУ им В. И. Ленина) оживит урок по любому школьному предмету. Тема “Умозаключение” и ее использование отражены в данной книге подробно; в ней выделены два отдельных параграфа: “Дедукция и индукция в учебном процессе” и “Умозаключение по аналогии и его виды”. Желательно в процессе преподавания любого предмета показать структуру многих форм умозаключений, при этом предложить учащимся поискать в художественной ___________________________ 'Светлов В. А. Нужна ли логика учителю?// Советский учитель. Л., 1991. 25 янв. С. 2. 2Такие программы созданы в Москве (МГУ им. М. В. Ломоносова и МПГУ им. В. И. Ленина), в Минске (БГУ), в Санкт-Петербурге и др. 446 литературе примеры на эти виды умозаключений. Например, в рассказе Агаты Кристи “Двойная улика” месье Пуаро расследует похищение ряда драгоценностей из коллекции Хардмана (жемчужины, рубины, изумрудное ожерелье). Подозрение могло касаться четверых. Вот их диалог, в котором сформулировано умозаключение: “- Мистер Хардман, кого Вы сами подозреваете из этой четверки? - О, месье Пуаро, что за вопрос! Ведь я Вам уже сказал, что это мои друзья. Я ни одного из них не подозреваю или, если Вам угодно, - всех в одинаковой мере. - Не могу с Вами согласиться. Я уверен, что Вы кого-то из них подозреваете. Это не графиня Росакова. Это не мистер Паркер. Кто же тогда: леди Ранкорн или мистер Джонстон?”'. Структура этого умозаключения такая: (abcd;):(сd) Это относительно новая разновидность структуры разделительно-категорического умозаключения. Вообще в художественной литературе можно найти богатейшее собрание самых интересных иллюстраций по курсу логики; следует к такой работе подключить и студентов, и учащихся школы. Это одна из заманчивых перспектив в методике изучения логики, свидетельствующая о тесном взаимодействии языка и мышления. Значительный интерес представляет раздел логики, посвященный спору, дискуссиям, разоблачению различных недопустимых уловок, используемых в полемике. В исследование этой темы оригинальный вклад внес русский логик С. И. Поварнин (1870-1952)2. После изучения курса логики рекомендуем проверить свои знания. Для этого можно ответить на предлагаемые ниже задания тестов. ___________________________ 'Агата Кристи. Двойная улика. М., 1990. С. 25. 2См.: Поварнин С. И. Спор: О теории и практике спора // Вопросы философии. М., 1990. №3. С. 57-133. |