Главная страница
Навигация по странице:

  • 4. Влияние природы растворителя на скорость электрохимических реакций

  • Получение величины для константы скорости и коэффициента переноса

  • 5. Электроосмос Электроосмос

  • Электроосмос (электроэндоосмос)

  • 7. Электрохимическое перенапряжение (перенапряжение переноса заряда)

  • 8. Факторы, влияющие на перенапряжение водорода. Перенапряжение кислорода Факторы, влияющие на η Н 2

  • ЛЕКЦИЯ № 14. Применение теоретической и прикладной электрохимии 1. Прикладная электрохимия Прикладная электрохимия

  • 2. Электрохимия углерода

  • 4. Стохастические процессы и самоорганизующиеся системы Стохастические процессы и самоорганизующиеся системы

  • 5. Исследование явления высокотемпературной сверхпроводимости в оксидах сложного состава

  • 7. Метод гальваностатических кривых

  • Физическая химия конспект лекций. Конспект лекций Введение


    Скачать 1.05 Mb.
    НазваниеКонспект лекций Введение
    АнкорФизическая химия конспект лекций.doc
    Дата13.12.2017
    Размер1.05 Mb.
    Формат файлаdoc
    Имя файлаФизическая химия конспект лекций.doc
    ТипКонспект
    #11334
    страница10 из 11
    1   2   3   4   5   6   7   8   9   10   11

    Анодные процессы

    Ионизация металла (с растворимыми анодами)

    С нерастворимыми анодами – реакция выделения кислорода.

    При повышенных анодных плотностях тока растворимые аноды могут пассивироваться, на поверхности этих анодов образуются фазовые пленки, которые могут быть как токопроводящими, так и непроводящими, в последнем случае ток будет проходить через поры, если пленка не сплошная. Во всех случаях при пассивации анода анодный потенциал будет повышаться, что приведет к изменению анодных реакций и к изменению валентности металла.

    4. Влияние природы растворителя на скорость электрохимических реакций

    Замена одного растворителя на другой скажется на каждой из стадий электрохимического процесса. В первую очередь это отразится на процессах сольватации, ассоциации и комплексообразования в растворах, скажется на стадии диффузии, на скорости процесса разряда ионизации. Изменения в объеме раствора электролита, связанные с процессами сольватации, ассоциации, скажутся на скорости доставки вещества к поверхности электрода и на скорости разряда ионизации. Влияние природы растворителя на стадии разряда ионизации проявляется изменениями константы скорости реакции, коэффициента переноса. Например, при электровосстановлении кадмия из растворов с различными растворителями были получены следующие величины для константы скорости и коэффициента переноса α– доли энергии (табл. 7).

    Таблица 7

    Получение величины для константы скорости и коэффициента переноса



    Объяснение изменений кинетических параметров процесса состоит в следующем:

    1) изменяется строение ДЭС;

    2) изменяется адсорбционная способность разряжающихся частиц;

    3) разряжающиеся ионы имеют различную сольватную оболочку.

    Для объяснения влияния природы растворителя на скорость реакции в объеме раствора была использована теория «Абсолютных скоростей реакции». Основным моментом данной теории является введение понятия «активированный комплекс». Рассмотрим изменение ΔG (свободная энергия Гиббса) при замене одного растворителя на другой (рис. 12).




    Рис. 12. Энергетические профили реакции. А – исходное энергетическое состояние для реагента, участвовавшего в реакции, В – энергетическое состояние продуктов реакции, ≠– активированный комплекс.

    Для того чтобы прошла реакция в исходное состояние и перешла в состояние активированного комплекса, требуются затраты энергии – Еа. Энергетический профиль, описанный кривой I, соответствует состоянию, когда исходное вещество и активированный комплекс не сольватированы. Энергия, необходимая для превращения вещества А в вещество В для реакции: F = ΔGI. При замене растворителя допустим вариант (а): происходит сольватация активированного комплекса – кривая II. В этом случае наблюдается уменьшение Еапроцесса на величину ΔGII. При сольватации исходного реагента (вариант б) – кривая III, происходит увеличение Еапроцесса на величину ΔGIII.

    5. Электроосмос

    Электроосмос – перенос жидкости по отношению к граничащей с ней неподвижной твердой поверхностью при приложении ЭДС (электродвижущей силы). Электроосмос возможен только в системах с твердой дисперсной фазой.

    Электрокинетические процессы происходят в тех случаях, когда одна фаза диспергирована в другой; к их числу относится электрофорез – движение взвешенных твердых частиц внутри жидкости. При наложении электрического поля наблюдается электроосмос – движение жидкости относительно твердого тела. Электрокинетические явления – эффекты, связанные с относительным движением двух фаз под действием электрического поля, а также с возникновением разности потенциалов при относительном смещении двух фаз, на границе между которыми существует ДЭС. Чаще всего электрокинетические явления наблюдаются в диспергированных системах.

    Электроосмос (электроэндоосмос) – движение жидкостей (или газов) через капилляры, твердые пористые диафрагмы и мембраны, а также через слои очень мелких частиц под действием внешнего электрического поля. Все электрокинетические явления имеют общий механизм и связаны с существованием на границе раздела фаз ДЭС. Под действием внешнего электрического поля, направленного вдоль границ раздела, возникает относительное перемещение противоположно заряженных обкладок ДЭС, что и приводит к относительному движению фаз. С другой стороны, движение одной из фаз по отношению к другой, вызванное механической силой, приводит в относительное движение также обкладки ДЭС и тем самым вызывает появление разности потенциалов в направлении движения фаз. Электроосмос при экспериментальном исследовании обычно осуществляют наложением разности потенциалов на жидкость с двух сторон капилляра или пористой диафрагмы. Поддерживая давление с обеих сторон одинаковым и измеряя в этих условиях количество протекающей в единицу времени жидкости, легко определить скорость электроосмоса.

    Электроосмос и электрофорез используются при обезвоживании и очистке различных материалов, нанесении на непроводящие материалы покрытий из каучука, отходов кожи и т. п., также при пропитке тканей огнестойкими веществами, определении состава и разделении энзимов, белков, вирусов и других сложных систем. Исследованиями Г. Видемана в 1852 г. было установлено, что количество жидкости, прошедшей через капилляры пористой диафрагмы, пропорционально силе тока и при постоянной силе тока не зависит от площади сечения или толщины диафрагмы. Это явление было названо электроосмосом.

    Наличие у частиц дисперсных систем электрического заряда открыто в 1808 г. Ф. Ф. Рейсом в МГУ. Он показал, что при наложении разности электрических потенциалов на электроды, опущенные в заполненные водой стеклянные трубки, воткнутые в кусок сырой глины, жидкость в трубке с положительным полюсом мутнела, а в трубке с отрицательным полюсом вода оставалась прозрачной. Это указывало на то, что частицы глины переносятся к положительному полюсу с постоянной скоростью. Эта скорость тем больше, чем выше приложенная разность потенциалов и диэлектрическая проницаемость среды, и тем меньше, чем больше вязкость среды. Перенос частиц в электрическом поле – электрофорез.

    6. Электрокапиллярные кривые

    Изменение состава электролита и изменение компонентов в электролите изменяют электрокапиллярные кривые. Форма электрокапиллярной кривой зависит от состава электролита и концентрации активных компонентов в составе электролита. Зависимость формы электрокапиллярной кривой от состава электролита связана с процессами адсорбции на границе раздела фаз (рис. 13). Присутствие в электролите ПА (поверхностно-активные) анионов приводит к смещению потенциала точки нулевого заряда в область более отрицательного значения и некоторому снижению max электрокапиллярной кривой.

    В присутствии NaJ, NaCl происходит изменение хода электрокапиллярной кривой.

    Кривые 2 и 3 – электрокапиллярные кривые, снятые в электролитах, содержащих ПА анионы: J-, Cl. В области наиболее низких электродных потенциалов все три электрокапиллярные кривые совпадают, так как при указанных потенциалах наблюдается десорбция ПА анионов. В присутствии ПА катионов электрокапиллярные кривые имеют вид:




    Рис. 13. Кривые 2, 3 в присутствии ПА катионов.

    Наличие в элементе ПА органических веществ приводит к снижению max электрокапиллярной кривой (рис. 14).




    Рис. 14. Кривая 2 – с добавками ПАВ (поверхностно-авктивныхвеществ).

    Молекулярный тип – не дипольные молекулы 2 – с добавками ПА органическими.

    Электрокапиллярная кривая – исходная кривая, дифференцируя ее, определяем емкость ДЭС.

    7. Электрохимическое перенапряжение (перенапряжение переноса заряда)

    1. Вывод уравнения полной поляризационной кривой.

    2. Перенапряжение при выделении Н2.

    3. Перенапряжение при выделении О2.

    Если на электроде замедлена стадия присоединения или отдачи электронов, то возникающее перенапряжение – перенапряжение переноса заряда (перенапряжение перехода – электрохимическое перенапряжение).

    Теория разряжения для реакции выделения Н2 на катоде:



    Стадия переноса электрона из-за построения новой кристаллической решетки затруднена.

    8. Факторы, влияющие на перенапряжение водорода. Перенапряжение кислорода

    Факторы, влияющие на ηН2:

    1) ρтока (плотность тока). Зависимость от плотности тока описывается уравнением Тафеля;

    2) природа материала катода – ряд по возрастанию η, η– перенапряжение.

    В уравнении Тафеля const a характеризует зависимость ηот природы материала катода, а константа b отражает зависимость от плотности тока.

    В классическом варианте b – 0,12В, а – меняется в широких пределах, из-за разных металлов и разных катодных взаимодействий с Н2.

    а – 0,01…1,0 В, чем больше а, тем большеη Н2. Большим η Н2 обладают: Hg, Pb, Zn, низким ηН2 – Pt, средним ηН2 – Fe, Co, Ni;

    3) состав раствора. Наибольшее ηв рН = 7, а в рН < 7 η меньше. В растворе могут быть ПАВ, они влияют на величинуη, включаются в плотную часть ДЭС.

    Уравнение ηв присутствии ПАВ:



    где ψ– потенциал плотной части ДЭС;

    4) температура. С ростом температуры ηуменьшается.

    Перенапряжение кислорода

    Кислород выделяется на аноде при потенциалах более положительных, чем равновесный.



    в щелочном растворе,



    в нейтральном, кислом растворе.

    Перенапряжение О2 зависит от ρт (плотность тока), в соответствии с уравнением Тафеля. В ряду металлов, расположенных по мере возрастания перенапряжения Н2, перенапряжение О2, наоборот, уменьшается. При увеличении температуры ηО2 снижается.

    Когда на металле выделяется кислород, то он сразу же окисляет металл, и поэтому дальнейшее выделение кислорода уже проходит на окисленной поверхности.

    ЛЕКЦИЯ № 14. Применение теоретической и прикладной электрохимии

    1. Прикладная электрохимия

    Прикладная электрохимия – часть электрохимии, которая рассматривает электрохимические реакции с точки зрения применения их для практических целей – получения электрической энергии, нанесения металлических покрытий или получения целевых продуктов.

    По современным прогнозам, электрохимия должна играть важную роль в энергетике будущего. После овладения управляемой термоядерной реакцией возникает проблема разумного использования получаемой энергии, в связи с этим большое значение отводится водородной энергетике. Энергия термоядерных электростанций будет, в основном, расходоваться на разложение Н2О. Получаемый таким путем Н2 может быть использован как экологически чистый теплоноситель для отопления городов, для приведения в движение автомобилей. Электрохимический метод используют для очистки сточных вод с выделением Cu, Zn, Ag и других, процесс электродиализа – для опреснения вод.

    2. Электрохимия углерода

    В настоящее время углерод, благодаря своей слоистой структуре в виде графита, широко используется для синтеза соединения внедрения графита, который, в свою очередь, нашел применение в литиевом источнике тока (аккумуляторе), используется в науке, технике. Наряду с Сгр и его производными, в последние годы ученые и техники занялись разработкой и получением фуллерена (С60, С70). С60 – имеет шарообразную полую структуру, С70 – эллипсообразную. Они построены из гексогональных и пентагональных ячеек.

    Эти соединения способны поглощать щелочные, редкоземельные металлы, фторопроизводные. Эти вещества исследуются сейчас во всех отраслях науки и техники, оказывают активирующее действие.

    3. Биоэлектрохимия

    Изучает структуру и свойства мембран живых клеток, механизм переноса ионов через мембрану, природу скачка потенциала на мембране живой клетки, механизм передачи потенциала вдоль нервного волокна. Знания механизма работы клеточной мембраны позволят разработать различные приборы, работающие по принципу работы живой клетки. В настоящее время известны различные искусственные органы. Электрические угри – микроэлектростанции со скоростью, большей в 1000 раз (чтобы заменить атомные электростанции), бионика (особенности безошибочных перелетов птиц, сверхчувствительного слухового, зрительного нерва).

    4. Стохастические процессы и самоорганизующиеся системы

    Стохастические процессы и самоорганизующиеся системы являются предметом изучения электрохимической синергетики. Такие процессы имеют место во всех областях: переход от ламинарного к турбулентному процессу, электроосаждение металлов, колебательное явление с пассивацией металла. В основе синергетики лежат законы неравновесной термодинамики, так как колебательные явления обнаруживаются все больше.

    5. Исследование явления высокотемпературной сверхпроводимости в оксидах сложного состава

    В настоящее время наиболее изучены оксиды на основе Cu и Bi, в состав оксидов, помимо Cu, Bi, входят щелочно-земельные металлы – B a, C a, Sr, р.з.м. (редкоземельные) – лантаниды, Ir, известны соединения, содержащие Tl, (Cu, Bi, Tl, Pb) – металлы, способные проявлять переменную валентность. Переход этих металлов из одного валентного состояния в другое в структуре оксидов может привести к тому, что при некоторой критической температуре, близкой к температуре жидкого азота, вещества подобного типа теряют способность сопротивляться пропусканию электрического тока. Электрический ток может мгновенно возрастать в тысячи и десятки тысяч раз. Это явление получено в настоящее время при изготовлении проводов для высоковольтных передач, на транспорте. Широкое практическое использование явления сверхпроводимости затруднено в связи с тем, что эти вещества гигроскопичны и легко теряют свое свойство при поглощении воды. В связи с этим ведутся поиски новых технологий получения этих веществ. Открытие ВТСП послужило началом для развития нового направления низкотемпературной электрохимии – криоэлектрохимии.

    6. Моделирование электрохимических процессов

    Моделирование электрохимических процессов состоит в следующем. На основе системы уравнений, лежащих в основании какого-либо электрохимического металлического исследования, составляется программа для исследуемого электрохимического процесса с учетом предполагаемого механизма этого процесса и лимитирующих стадий. Задаются исходные параметры (i, потенциал, t, c, η, коэффициент переноса заряда) и с помощью компьютера проводится расчет.

    7. Метод гальваностатических кривых

    В этом методе анализируется зависимость Е, t при заданной i.



    Рис. 15.1, 3 – резкое изменение потенциала, где наступает заряжение ДЭС (изменение заряда поверхности); ΔE/Δt– угловой коэффициент наклона, по нему можно рассчитать емкость ДЭС.

    Для этого необходимо кривую записывать с помощью осцилирования, так как заряжение ДЭС происходит в течение тысячных долей секунды. В обычных условиях прибора КСП-4 кривую можно зарегистрировать с точностью до 0,1 с, определяемую по угловому коэффициенту; емкость является поляризационной емкостью (псевдоемкость). Она характеризует количество адсорбированных частиц на электроде, которые вступают в электрохимическую реакцию. Потенциал начала реакции, где первая дуга переходит во вторую – Еa. Участок 2 характеризует время протекания электрохимической реакции. Из точек пересечения касательных опускаем перпендикуляр и находим отрезок, τ – переходное время процесса, i x τ = Q– количество образовавшегося продукта. Можно на основе определения переходного времени процесса при различных плотностях тока анализировать зависимость τ от i. Для замедленной стадии диффузии, лимитирующей скорость суммарного электрохимического процесса, зависимость между переходным временем и плотностью тока:



    F – число Фарадея;

    С0 – объемная концентрация ионов в растворе;

    D – коэффициент диффузии.

    В случае замедленной диффузии

    (зависит только от концентрации раствора) по угловому коэффициенту наклона прямой можно рассчитать коэффициент диффузии.



    Знание зависимости переходного времени от i позволяет определить const скорости химической стадии и Кр; если электрохимическая реакция лимитируется замедленной предшествующей химической стадией то например: при катодном выделении Н2



    k2– const молизации, kр = k1/k2.



    τ в химической стадии будет меньше ∑τ на величину, определяемую const скорости замедленной химической стадии.



    Кроме того, определение переходного времени позволяет графически находить адсорбцию веществ, участвующих в процессе. Количество электричества, определяемое длиной задержки на Е, t кривых, складывается из количества электричества, которое идет на протекание электрохимической реакции и может быть определено через долю τ, связанную с диффузией вещества к поверхности элект-рода и с адсорбцией вещества на электроде

    iτ = iτд+ iτадс.

    При высоких плотностях тока доля электричества, которое тратится на электрохимическое превращение диффундирующих частиц, → 0.

    iτ ≈ iτадс, iτадс = Г

    где Г – величина адсорбции.

    Существует несколько механизмов протекания электрохимических реакций с участием адсорбированных частиц:

    1) сначала в реакцию вступают частицы, адсорбированные на поверхности электрода, а потом те, которые подходят к поверхности за счет диффузии – «сначала адсорбат»;

    2) «адсорбат потом» – сначала электрохимическому превращению подвергаются диффузионные частицы, а затем те, которые адсорбируются на поверхности;

    3) выполняется в тех случаях, когда поверхностная концентрация реагирующих частиц и их концентрация у поверхности подчиняется уравнению линейной изотермы адсорбции;

    4) когда соотношения скоростей восстановления адсорбированных частиц и частиц диффундирующих из объема раствора, их концентрация не зависит от времени: 



    1   2   3   4   5   6   7   8   9   10   11


    написать администратору сайта