Главная страница
Навигация по странице:

  • 1. Предмет и задачи дисциплины "Эконометрика" 1.1. Определение эконометрики

  • 1.2. Взаимосвязь эконометрики с экономической теорией, статистикой и экономико-математическими методами

  • 1.3. Области применения эконометрических моделей

  • 1.4. Методологические вопросы построения эконометрических моделей

  • Курс лекций по дисциплине Эконометрика


    Скачать 2.09 Mb.
    НазваниеКурс лекций по дисциплине Эконометрика
    Дата11.05.2023
    Размер2.09 Mb.
    Формат файлаdoc
    Имя файлаlekcii.doc
    ТипКурс лекций
    #1121934
    страница1 из 14
      1   2   3   4   5   6   7   8   9   ...   14

    Курс лекций по дисциплине «Эконометрика»1
    Введение
    В последнее время специалисты, обладающие знаниями и навыками проведения прикладного экономического анализа с использованием доступных математических и программных средств, пользуются спросом на рынке труда. Одной из центральных дисциплин в подготовке таких специалистов является дисциплина "Эконометрика".

    Эконометрика является областью знаний, которая охватывает вопросы применения статистических методов к теоретическим моделям, описывающим реальные экономические процессы.

    Очевидно, что с помощью моделей можно получить много информации об экономических процессах, объяснить те или иные явления или процессы, но никогда не удастся получить всю информацию и однозначно определить истинный механизм экономического процесса или явления.

    И даже в тех случаях, когда достаточно адекватная исходным данным эконометрическая модель построена и вопрос только в использовании ее для объяснения экономической ситуации или принятия решения, следует весьма осторожно подходить к выводам и рекомендациям, следующим из модельных оценок.

    Эконометрический анализ, как правило, проводят с помощью ПЭВМ. В последние несколько лет сформировался обширный набор из пакетов прикладных программ, позволяющих автоматизировать процессы такого анализа. К наиболее распространенным относятся пакеты SAS, SPSS, Stata, Eviews и др. Имеются простейшие опции для проведения эконометрического анализа в Excel.

    В настоящем пособии даются основные понятия, модели и методы эконометрики, рассматриваются примеры.

    Содержание пособия полностью соответствует требованиям государственного стандарта высшего профессионального образования за исключением темы "Системы одновременных уравнений".

    Для работы с предлагаемым изданием необходимы базовые знания некоторых разделов следующих учебных дисциплин: высшая математика, теория вероятностей, математическая статистика, общая теория статистики.

    Эффективным является использование данной книги в сочетании с самостоятельным разбором примеров с использованием доступного статистического программного обеспечения.

    1. Предмет и задачи дисциплины "Эконометрика"
    1.1. Определение эконометрики

    Сложность экономических процессов и необходимость их количественного измерения не позволяют современному экономисту ограничиваться в своей работе применением инструментов отдельных экономических дисциплин. Так, например, невозможно сделать прогноз о том, будет ли пользоваться спросом новый продукт (сорт кофе), если рассматривать этот процесс только с точки зрения экономической теории, то есть закона спроса и предложения. На практике для осуществления прогноза экономисту необходимо применить целый комплекс экономических наук, синтез которых и является сутью научной дисциплины - эконометрики.

    Основной целью эконометрики является модельное описание конкретных количественных взаимосвязей, обусловленных общими качественными закономерностями, изученными в экономической теории.

    Эконометрика – относительно молодая научная дисциплина, сформировавшаяся во второй половине ХХ века и развивающаяся на стыке экономической теории, статистики и математики (см. рис. 1.1).



    Рис. 1.1. Эконометрика и ее место в ряду других экономических

    и статистических дисциплин

    Впервые термин эконометрика был введен норвежским ученым Рагнаром Фришем в 1926 году и в буквальном переводе означает «измерение в экономике». Однако на сегодняшний день эта трактовка чересчур широка. Более четко определение эконометрики предложено известным российским ученым, профессором С.А. Айвазяном.

    Эконометрика - это самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей, предназначенных для того, чтобы на базе

    - экономической теории,

    - экономической статистики,

    - математико-статистического инструментария

    придавать конкретное количественное выражение общим качественным закономерностям, обусловленным экономической теорией.

    Таким образом, суть эконометрики состоит в синтезе экономической теории, экономической статистики и математико-статистического инструментария.
    1.2. Взаимосвязь эконометрики с экономической теорией, статистикой и экономико-математическими методами

    Эконометрика не только выявляет объективно существующие экономические законы и связи между экономическими показателями, качественно определенными в экономической теории, но и формирует подходы к их формализации и количественному выражению. Так, к примеру, экономическая теория гласит, что повышение цены на товар, при прочих равных условиях, приводит к падению спроса на него. Однако экономическая теория не может дать ответ на вопрос о величине снижения спроса на конкретный товар в конкретных условиях. Решить эту задачу можно только с помощью эконометрики, которая, таким образом, вносит эмпирическое содержание в экономическую теорию.

    В рамках экономического анализа, как правило, выдвигаются какие-либо гипотезы, строятся теории, объясняющие явление или процесс. Узкое место заключается в подтверждении теоретических гипотез фактическими данными. Поэтому в количественном экономическом анализе главную роль играет формирование гипотезы и ее проверка. Интуитивные утверждения должны приобрести форму предположений, которые могут быть либо приняты, либо отвергнуты после сопоставления с наблюдаемыми фактами.

    Вопросами применения статистических методов к теоретическим моделям, описывающим реальные хозяйственные процессы, и занимается эконометрика.

    Экономическая статистика как элемент информационного обеспечения эконометрики предполагает решение таких задач, как выбор необходимых статистических показателей и обоснование способа их измерения, определение плана статистического обследования и т.д.

    Под математико-статистическим инструментарием в эконометрике подразумеваются отдельные расширенные разделы математической статистики, связанные с регрессионным анализом (классическая модель регрессии и классический метод наименьших квадратов, обобщенная модель регрессии и обобщенный метод наименьших квадратов), построением и анализом моделей временных рядов и систем одновременных уравнений.

    Вместе с тем, необходимо различать эконометрику и математическую экономику. Именно приземление экономической теории на базу конкретной экономической статистики и извлечение из этого приземления с помощью подходящего математического аппарата вполне определенных количественных взаимосвязей являются ключевыми моментами в понимании сущности эконометрики, разграничении её с математической экономикой, описательной экономической статистикой и математической статистикой.

    Так, математическая экономика – это математически сформулированная экономическая теория, которая изучает взаимосвязи между экономическими переменными на абстрактном (неколичественном) уровне. Она становится эконометрикой, когда символически представленные в этих взаимосвязях коэффициенты заменяются конкретными численными оценками, полученными на базе соответствующих экономических данных.
    1.3. Области применения эконометрических моделей

    Области применения эконометрических моделей напрямую связаны с целями эконометрического моделирования, основными из которых являются:

    1. прогноз экономических и социально-экономических показателей, характеризующих состояние и развитие анализируемой системы;

    2. имитация различных возможных сценариев социально-экономического развития анализируемой системы.

    В качестве анализируемой экономической системы могут выступать страна в целом (макроэкономические системы), регионы, отрасли и корпорации (мезосистемы), а также предприятия, фирмы и домохозяйства (микроэкономические системы).

    Кроме того, исследователь должен сформулировать профиль эконометрического моделирования, которое может быть сконцентрировано на проблемах финансового рынка, инвестиционных и социальных проблемах, или же на целом комплексе проблем одновременно. Понятно, что, чем конкретнее сформулирован профиль исследования, тем более эффективны его результаты.

    Например, исследователь изучает проблемы доходов домохозяйств страны. Целесообразнее было бы разделить эту большую задачу на исследование доходов городских и сельских домохозяйств, так как механизм их формирования существенно различен. Эконометрические модели, построенные отдельно для городских и сельских домохозяйств, будут гораздо более адекватны действительности, чем общая модель.

    1.4. Методологические вопросы построения эконометрических моделей

    В любой эконометрической модели, в зависимости от конечных прикладных целей ее использования все участвующие в ней переменные подразделяются на:

    • экзогенные переменные, задаваемые как бы извне, автономно, в определенной степени управляемые (планируемые);

    • эндогенные переменные, значения которых формируются в процессе и внутри функционирования анализируемой социально-экономической системы под воздействием экзогенных переменных и во взаимодействии друг с другом, являются предметом объяснения в эконометрической модели;

    • предопределенные переменные выступают в роли факторов-аргументов или объясняющих переменных;

    • лаговые эндогенные переменные входят в уравнения анализируемой эконометрической системы, но измерены в прошлые моменты, а следовательно, являются уже известными, заданными.

    Эконометрическая модель служит для объяснения поведения эндогенных переменных в зависимости от значений экзогенных и лаговых эндогенных переменных.

    Весь процесс эконометрического моделирования можно разбить на шесть основных этапов.

    1-й этап (постановочный) – определение конечных целей моделирования, набора участвующих в модели факторов и показателей, их роли;

    2-й этап (априорный) – предмодельный анализ экономической сущности изучаемого явления, формирование и формализация априорной информации и исходных допущений, в частности относящейся к природе и генезису исходных статистических данных и случайных остаточных составляющих в виде ряда гипотез;

    3-й этап (параметризация) – собственно моделирование, т.е. выбор общего вида модели, в том числе состава и формы входящих в неё связей между переменными;

    4-й этап (информационный) – сбор необходимой статистической информации, т.е. регистрация значений участвующих в модели факторов и показателей;

    5-й этап (идентификация модели) – статистический анализ модели и в первую очередь статистическое оценивание неизвестных параметров модели. Непосредственно связан с проблемой идентифицируемости модели, то есть ответа на вопрос «Возможно ли в принципе однозначно восстановить значения неизвестных параметров модели по имеющимся исходным данным в соответствии с решением, принятым на этапе параметризации?». После положительного ответа на этот вопрос необходимо решить проблему идентификации модели, то есть предложить и реализовать математически корректную процедуру оценивания неизвестных параметров модели по имеющимся исходным данным;

    6-й этап (верификация модели) – сопоставление реальных и модельных данных, проверка адекватности модели, оценка точности модельных данных. В ходе верификации модели решаются вопросы о том:

    - насколько удачно удалось решить проблемы спецификации, идентифицируемости и идентификации, т.е. можно ли рассчитывать на то, что использование полученной модели в целях прогноза даст результаты, адекватные действительности;

    - какова точность (абсолютная, относительная) прогнозных и имитационных расчетов основанных на построенной модели;

    Получение ответов на эти вопросы с помощью тех или иных математико-статистических методов и составляет содержание верификации модели.

    Проблема спецификации модели решается на 1, 2, 3 этапах моделирования и включает в себя:

    • определение конечных целей моделирования (прогноз, имитация сценариев развития анализируемой системы, управление);

    • определение списка экзогенных и эндогенных переменных;

    • определение состава анализируемой системы уравнений и тождеств и соответственно списка предопределенных переменных;

    • формулировка исходных предпосылок и априорных ограничений относительно стохастической природы остатков (рассмотрение проблемы гомоскедастичности).

    Этапы 4, 5 и 6 сопровождаются процедурой калибровкимодели, которая заключается в переборе большого числа вариантов, обусловленных наличием «нормативных» ограничений, определенных содержательным смыслом анализируемых связей и определенной нечеткостью (неполнотой) статистической информации. Калибровка модели - трудоемкая процедура, что связано с многократными «вычислительными прогонами» модели.

    Наиболее распространенными в эконометрическом моделировании являются следующие образующие четыре группы методы:

    • классическая линейная модель множественной регрессии (КЛММР) и классический метод наименьших квадратов (МНК);

    • обобщенная КЛММР и обобщенный МНК;

    • методы статистического анализа временных рядов;

    • методы анализа систем одновременных эконометрических уравнений.

    Применение этих методов делает возможным построение следующих типов эконометрических моделей:

    1. Регрессионные модели с одним уравнением.

    В таких моделях зависимая (объясняемая) переменная представляется в виде функции

    ,

    где - независимые (объясняющие) переменные,

    - параметры.

    В зависимости от вида функции модели делятся на линейные и нелинейные.

    Например, можно исследовать уровень дохода семьи как функцию от ряда ее экономических и социально-демографических характеристик (наличие и количество работников в семье, наличие и количество детей и прочих иждивенцев, уровень образования и квалификации главы семьи и т.д.).

    2. Модели временных рядов.

    К этому классу относятся модели:

    • тренда: ,

    где t – время,

          - временной тренд заданного параметрического вида (например, линейный ),

     - случайная (стохастическая) компонента;

    • сезонности: ,

    где - периодическая (сезонная) компонента,

    - случайная (стохастическая) компонента.

    • тренда и сезонности: (аддитивная) или

    (мультипликативная)

    где - временной тренд заданного параметрического вида,

    - периодическая (сезонная) компонента,

    - случайная (стохастическая) компонента.

    Кроме того, существуют модели временных рядов, в которых присутствует циклическая компонента, формирующая изменения анализируемого признака, обусловленные действием долговременных циклов экономической, демографической или астрофизической природы (волны Кондратьева, циклы солнечной активности и т.д.).

    Модели временных рядов могут применяться для изучения и прогнозирования объема продаж туристических путевок, спроса на железнодорожные и авиабилеты, при краткосрочном прогнозировании процентных ставок и т.д.

    3. Системы одновременных уравнений.

    Эти модели описываются системами уравнений. Системы могут состоять из тождеств и регрессионных уравнений, каждое из которых, кроме объясняющих переменных, может включать в себя объясняемые переменные из других уравнений системы. Системы одновременных уравнений требуют сложного математического аппарата и могут быть использованы для моделей национальной экономики.

    Ярким примером системы одновременных уравнений служит модель спроса и предложения. Пусть - спрос на товар в момент времени t, - предложение товара в момент времени t, - цена на товар в момент времени t, Yt – доход в момент t.

    Составим систему уравнений "спрос – предложение":

    (предложение),

    (спрос),

    (равновесие).

    Цена товара Pt и спрос на товар определяются из уравнений модели, то есть являются эндогенными переменными. Объясняющими переменными в данной модели являются доход Ytи значение цены товара в предыдущий момент времени .

    Для эконометрического моделирования используются данные следующих трех типов.

    1. Предположим, что мы располагаем результатами регистрации значений переменных на n статистически обследованных объектах. Так что если i – номер обследованного объекта, то имеющиеся исходные статистические данные состоят из n строк вида , где - значение j переменной, зарегистрированное на i обследованном объекте. То есть данные могут быть представлены в виде матрицы np:

    .

    Такой тип данных называется пространственной выборкой или данными поперечного среза (cross-section data). Такие данные не имеют временного параметра, и порядок их следования не существенен. Пример: финансовые показатели работы предприятий за истекший год.

    1. Предположим, что данные регистрируются на одном и том же объекте, но в разные периоды времени. Тогда аналогом i будет номер периода времени, к которому привязаны соответствующие данные, а n будет общим числом периодов времени. Такие данные называются временнóй выборкой, или временными рядами данных (time series data), или данными продольного среза. Для таких данных существенен порядок следования значений переменных. Пример: финансовые показатели предприятия за последние несколько лет.

    2. Наконец, предположим, что отслеживается каждый из n объектов в течение T периодов времени. То есть имеем последовательность матриц вида X, отнесенных к моментам времени 1,2,…,Т:

    .

    Такие данные называются панельными, или пространственно-временной выборкой (panel data). Данные сочетают в себе свойства как временных рядов, так и данных поперечного сечения. Как правило, значение T мало. Пример: показатели социально-экономического состояния домохозяйств за три года.
      1   2   3   4   5   6   7   8   9   ...   14


    написать администратору сайта