Лекция 18. Лимфоидные органы. Лимфопоэз. Тимус (зобная, или вилочковая железа). Лекция 19. Пищеварительная система Лекция 20. Развитие и строение зубов Лекция 21. Желудок Лекция 22. Толстая кишка
Скачать 2.12 Mb.
|
Фибриллярные структуры клетки (микрофиламенты, микрофибриллы) Микрофиламенты (microfilamenti) — нитчатые структуры диаметром около 6 нм, состоят из сократительных белков актина, миозина, тропомиозина, альфа-актинина; располагаются под цитолеммой, образуя примембранный слой. При сокращении микрофиламентов цитолемма втягивается внутрь клетки при фагоцитозе, пиноцитозе и при телофазе во время разделения вновь образующихся клеток. Микрофиламенты участвуют в выбрасывании псевдоподий при амебовидном движении клеток. Функции микрофиламентов: 1) образуют цитоскелет; 2) участвуют во внутриклеточном движении (перемещении митохондрий, рибосом, вакуолей, втягивании цитолеммы при фагоцитозе); 3) участвуют в амебовидном движении клеток. Микрофибриллы (microfibrillae) — нитчатые структуры диаметром около 10 нм, состоят из фибриллярных белков. Эти белки в клетках различных тканей неодинаковы. Фибриллярными белками в эпителиальных тканях являются кератины, в фибробластах соединительной ткани — виментин, в клетках гладкой мышечной ткани — десмин. Функциональное значение микрофибрилл (промежуточных филаментов): 1) образуют скелет клетки; 2) по характеру фибриллярного белка можно определить, из какой ткани развилась опухоль. Например, если в опухоли обнаружен кератин, значит, она образовалась из эпителиальной ткани; если обнаружен виментин — из соединительной ткани, и т. д. Реснички (cilii) — специальные органеллы движения представляют собой выросты эпителиальных клеток высотой 5-10 мкм, диаметром около 300 нм. В основе ресничек находится аксонема (filamenta axialis), состоящая из 9 пар периферических и 1 пары центральных микротубул (2×9+2), прикрепляющихся к базальному тельцу (видоизмененной центриоли). Аксонема снаружи покрыта цитолеммой. Функции ресничек: осуществляют движения колебательные, круговые, крючкообразные. Благодаря движению ресничек эпителия дыхательных путей очищается поверхность слизистой оболочки от посторонних частиц и слизи. Однако под воздействием вдыхаемого курильщиками дыма реснички склеиваются, и прекращается удаление микроорганизмов, частиц пыли и т. п. с поверхности слизистой оболочки трахеи и бронхов, в результате чего развивается хронический бронхит. Жгутики (flagellum) — выросты клеток длиной до 150 мкм. В основе их также лежит аксонема, покрытая цитолеммой и прикрепляющаяся к базальному тельцу. Толщина аксонемы и базального тельца жгутиков и ресничек равна 200 нм. Жгутики содержатся в сперматозоидах. Функции жгутиков: благодаря колебаниям жгутиков клетки движутся в жидкости. Микроворсинки — выросты цитоплазмы клеток длиной около 1 мкм, диаметром около 100 нм; покрыты цитолеммой, в их основе имеются пучки микрофиламентов. Функции микроворсинок: 1) увеличивают поверхность клеток; 2) в кишечном и почечном эпителии осуществляют всасывающую функцию. Включения цитоплазмы (inclusiones cytoplasmae) — непостоянные компоненты клеток, возникающие и исчезающие в зависимости от клеточного метаболизма. Классификация включений. Включения делятся на трофические (белковые, углеводные, липидные), секреторные, экскреторные (продукты, подлежащие удалению из клетки и организма), пигментные, которые подразделяются на экзогенные (частицы пыли, каротин, красители) и эндогенные (гемоглобин, миоглобин, липофусцин, гемосидерин, меланин, липохромы, билирубин). ЛЕКЦИЯ 2 ЯДРО Ядро (nucleus) имеет различную форму, чаще — округлую, овальную, реже — палочковидную или неправильную. Форма ядра иногда зависит от формы клетки. Так, например, у гладких миоцитов, которые имеют веретеновидную форму, ядро палочковидной формы. Обычно в круглых клетках или кубических эпителиоцитах ядра имеют круглую форму. Например, лимфоциты крови имеют круглую форму и ядра у них обычно круглые. Но часто форма ядра не зависит от формы клетки. Например, в гранулоцитах крови, которые имеют круглую форму, ядро может иметь сегментированную или палочковидную форму. В нейтрофильных гранулоцитах крови женщины ядра могут иметь спутник (сателлит), который представляет собой половой хроматин, имеющий форму барабанной палочки. Что же такое ядро? Ядро — это система генетической детерминации и регуляции синтеза белка. Что такое детерминация? Детерминация — это предопределение или, проще говоря, программа, по которой развивается клетка. Таким образом, ядро выполняет 2 функции: 1) хранение и передача наследственной информации дочерним клеткам; 2) регуляция синтеза белка. Как осуществляется 1-я функция? Хранение наследственной информации обеспечивается тем, что в ДНК хромосом имеются репарационные ферменты, которые восстанавливают хромосомы ядра после их повреждения. Как передается наследственная информация дочерним клеткам? Во время интерфазы к каждой молекуле ДНК пристраивается ее точная копия. Затем эти совершенно одинаковые копии ДНК равномерно распределяются между дочерними клетками при делении материнской клетки. Как же ядро участвует в регуляции синтеза белка? Синтез белка регулируется благодаря тому, что на поверхности ДНК хромосом транскрибируются все виды РНК: информационные, рибосомные и транспортные, которые участвуют в синтезе белка на поверхности гранулярной ЭПС цитоплазмы клеток. В том случае, если увеличивается количество всех этих РНК и рибосом, повышается синтез белка. Если же в ядре вырабатывается малое количество РНК, то синтез белка снижается. Так ядро участвует в регуляции белкового синтеза. Строение ядра. Ядро включает хроматин (chromatinum), ядрышко (nucleolus), ядерную оболочку (nucleolemma) и ядерный сок (nucleoplasma).Хроматин интерфазного ядра называется так потому, что он способен воспринимать (окрашиваться) основные красители. Что же такое хроматин? Хроматин — это деспирализованные хромосомы, т. е. хромосомы, утратившие свою обычную форму. В том случае, если участок ДНК хромосомы наиболее диспергирован, то в этом месте образуется рыхлый хроматин, называемый эухроматином (euchromatinum), который обладает высокой активностью. В том случае, если участок ДНК хромосом не диспергирован, то он имеет уплотненную структуру. Такой хроматин называется гетерохроматином (heterochromatinum). Гетерохроматин не активен. Почему же эухроматин активен, а гетерохроматин не активен? Активность эухроматина объясняется тем, что фибриллы ДНК хромосом при этом деспирализованы, т. е. гены, на поверхности которых происходит транскрипция РНК, открыты. Благодаря этому создаются условия для транскрипции РНК. В том случае, если ДНК хромосомы не деспирализована, то гены здесь закрыты, что затрудняет транскрипцию РНК с их поверхности. Следовательно, уменьшается количество РНК и снижается синтез белка. Вот почему гетерохроматин не активен. Фибриллы ДНК. И в состав митотических хромосом, и в хроматин интерфазного ядра входят нити — примитивные, или элементарные, фибриллы, которые состоят из ДНК в количестве 1 единицы, гистоновых и негистоновых белков, составляющих 1,3 единицы, и РНК, количество которых равно 0,2 единицы. Длина фибрилл может составлять от нескольких сот микрометров до 7 см. Суммарная длина фибрилл всех хромосом ядра человека составляет 170 см. В фибриллах имеются участки независимой репликации хромосом, называемые репликонами; их длина составляет 30 мкм, общее количество в геноме человека — до 50 000. Гистоновые белки образуют блоки, каждый из которых состоит из 8 молекул. Эти блоки называются нуклеосомами. На нуклеосомы навертывается фибрилла ДНК толщиной 5 нм, толщина нуклеосомы вместе с фибриллой составляет 10 нм. При дальнейшей спирализации этой уже спирализованной фибриллы ее толщина достигает 20 нм. Среди белков хроматина гистоновые белки составляют до 80 %. Их функции: 1) особая укладка ДНК хромосом и 2) регуляция синтеза белка. Регуляция синтеза белка осуществляется через укладку фибрилл ДНК хромосом. Если при укладке фибрилл ДНК имеет место резкая конденсация, то образуется плотный хроматин (гетерохроматин), который, как уже известно, не активен; если при укладке фибрилл они слабо спирализуются, то образуется активный эухроматин. Функция негистоновых белков заключается в том, что они формируют ядерный матрикс. Количество РНК в составе хроматина составляет 0,2 единицы. Это нити РНК транскрибированные с поверхности генов ДНК. Они называются перихроматиновыми. Имеются РНК в виде гранул. Они могут быть интерхроматиновыми и перихроматиновыми; представляют собой соединение иРНК с белками и называются информосомами. Ядрышки. Ядрышек в ядре — от 1 до 3. Формируются ядрышки на поверхности ядрышковых организаторов хромосом. Если ядрышковые организаторы сконцентрированы в одном месте, то в ядре будет только одно ядрышко, а если в нескольких местах — несколько ядрышек. В том месте, где находятся ядрышковые организаторы хромосом, имеется несколько сот генов, на поверхности которых транскрибируются рибосомные РНК, из которых затем формируются субъединицы рибосом. Ядрышки состоят из 2 компонентов: 1) фибриллярного, расположенного в центре, и 2) гранулярного, локализованного на поверхности. Фибриллярный компонент — это фибриллы РНК, транскрибированные с поверхности генов ядрышковых организаторов. Гранулярный компонент — это субъединицы рибосом. Субъединицы рибосом образуются в результате комплексирования (соединения) рибосомных белков с фибриллами рибосомных РНК. Рибосомные белки синтезируются на поверхности гранулярной ЭПС цитоплазмы и через ядерные поры поступают в ядро, где соединяются с рРНК. Образовавшиеся субъединицы рибосом через ядерные поры транспортируются в цитоплазму клетки, где объединяются в рибосомы, которые оседают на поверхности гранулярной ЭПС или же образуют скопления в цитоплазме. Такие объединения рибосом в цитоплазме называются полисомами. Таким образом, регуляцию синтеза белка в клетке осуществляет ядрышко, так как на рибосомах, образующихся в ядрышках, происходит синтез белков. Ядрышки могут исчезать и в норме, и при патологии. Когда ядрышки исчезают в норме? В норме ядрышки исчезают в том случае, когда приходит период деления клетки и начинается спирализация фибрилл ДНК, в том числе и в области ядрышковых организаторов; тогда закрываются гены ядрышковых организаторов, на которых транскрибируются рРНК, прекращается транскрипция рРНК и ядрышко исчезает. Это может быть и в том случае, если на клетку воздействуют какие-то токсические вещества. Перед исчезновением ядрышко расчленяется, т. е. обособляется внутренняя фибриллярная часть от внешней гранулярной части. Затем исчезает гранулярный компонент ядрышка, т. е. субъединицы рибосом, и исчезает фибриллярный компонент, т. е. молекулы рРНК. Таким образом, чем больше размеры ядрышек или больше их количество, тем интенсивнее образуются субъединицы рибосом и повышается синтез белка в клетке. Ядерная оболочка. Ядерная оболочка (nucleolemma) состоит из 2 мембран: наружной (membrana nuclearis externa) и внутренней (membrana nuclearis interna). Между мембранами имеется пространство (cysterna nucleolemmae). Наружная ядерная мембрана покрыта рибосомами и тесно связана с ЭПС. Нередко можно видеть, как наружная мембрана продолжается в канальцы гранулярной ЭПС. Внутренняя ядерная мембрана связана с хроматином и фибриллярным ядерным компонентом. В нуклеолемме имеются ядерные поры (pori nuclearis). В их состав входят поровые комплексы (complexus pori), в составе которых имеются: отверстие поры (annulus pori) диаметром около 90 мкм, гранулы поры (granula pori) и мембрана поры (membrana pori). Отверстие поры образуется в результате слияния наружной и внутренней мембран. Гранулы поры располагаются в 3 ряда, по 8 гранул в каждом ряду. Размеры гранул — около 25 нм. Гранулы каждого ряда располагаются по периферии порового отверстия. Наружный слой гранул обращен в сторону цитоплазмы, внутренний слой — в сторону кариоплазмы, а третий слой размещен между наружным и внутренним. От гранул отходят фибриллы. Эти фибриллы соединяются с центральной гранулой, образуя мембрану поры (membrana pori). Функция ядерных пор заключается в том, что через них происходит обмен веществ между кариоплазмой и цитоплазмой клетки. Чем больше пор в нуклеолемме, тем активнее ядро. Если активность ядра снижена, то количество пор уменьшается; если синтетическая активность ядра близка к нулю, то поры в ядре отсутствуют. Например, поры отсутствуют в кариолемме ядра сперматозоида. При различных неблагоприятных воздействиях в ядре могут наблюдаться патологические изменения: пикноз — коагуляция хроматина ядра, кариорексис — распад ядра на части, может быть отечность перинуклеарного пространства. КЛЕТОЧНЫЙ ЦИКЛ Клеточный цикл (cyclus cellularis) — это период от одного до другого деления клетки или же период от деления клетки до ее гибели. Клеточный цикл разделяется на 4 периода. Первый период — митотический; 2-й— постмитотический, или пресинтетический, он обозначается буквой G1; 3-й — синтетический, он обозначается буквой S; 4-й — постсинтетический, или премитотический, он обозначается буквой G2, а митотический период — буквой М. После митоза наступает очередной период G1. В этот период дочерняя клетка по своей массе в 2 раза меньше материнской клетки. В этой клетке в 2 раза меньше белка, ДНК и хромосом, т. е. в норме хромосом в ней должно быть 2п и ДНК — 2с. Что же происходит в периоде G1? В это время на поверхности ДНК происходит транскрипция РНК, которые принимают участие в синтезе белков. За счет белков увеличивается масса дочерней клетки. В это время синтезируются предшественники ДНК и ферменты, участвующие в синтезе ДНК и предшественников ДНК. Основные процессы в периоде G1 — синтез белков и рецепторов клетки. Затем наступает период S. В течение этого периода происходит репликация ДНК хромосом. В результате этого к концу периода S содержание ДНК составляет 4с. Но хромосом будет 2п, хотя фактически их тоже будет 4п, но ДНК хромосом в этот период так взаимно переплетены, что каждая сестринская хромосома в материнской хромосоме пока не видна. По мере того как в результате синтеза ДНК увеличивается их количество и повышается транскрипция рибосомных, информационных и транспортных РНК, естественно возрастает и синтез белков. В это время может происходить удвоение центриолей в клетках. Таким образом, клетка из периода S вступает в период G2. В начале периода G2 продолжается активный процесс транскрипции различных РНК и процесс синтеза белков, главным образом белков-тубулинов, которые необходимы для веретена деления. Может происходить удвоение центриолей. В митохондриях интенсивно синтезируется АТФ, которая является источником энергии, а энергия необходима для митотического деления клетки. После периода G2 клетка вступает в митотический период. Некоторые клетки могут выходить из клеточного цикла. Выход клетки из клеточного цикла обозначается буквой G0. Клетка, вошедшая в этот период, утрачивает способность к митозу. Причем одни клетки утрачивают способность к митозу временно, другие — постоянно. В том случае, если клетка временно утрачивает способность к митотическому делению, она подвергается начальной дифференцировке. При этом дифференцированная клетка специализируется для выполнения определенной функции. После начальной дифференцировки эта клетка способна возвратиться в клеточный цикл и вступить в период Gj и после прохождения периода S и периода G2 подвергнуться митотическому делению. Где в организме находятся клетки в периоде G0? Такие клетки находятся в печени. Но в случае, если печень повреждена или часть ее удалена оперативным путем, тогда все клетки, подвергшиеся начальной дифференцировке, возвращаются в клеточный цикл, и за счет их деления происходит быстрое восстановление паренхимных клеток печени. Стволовые клетки также находятся в периоде G0, но, когда стволовая клетка начинает делиться, она проходит все периоды интерфазы: G1, S, G2. Те клетки, которые окончательно утрачивают способность к митотическому делению, подвергаются сначала начальной дифференцировке и выполняют определенные функции, а затем окончательной дифференцировке. При окончательной дифференцировке клетка не может возвратиться в клеточный цикл и в конечном итоге погибает. Где в организме находятся такие клетки? Во-первых, это клетки крови. Гранулоциты крови, подвергшиеся дифференцировке, функционируют в течение 8 суток, а затем погибают. Эритроциты крови функционируют в течение 120 суток, потом также погибают (в селезенке). Во-вторых, это клетки эпидермиса кожи. Клетки эпидермиса подвергаются сначала начальной, потом окончательной дифференцировке, в результате которой они превращаются в роговые чешуйки, которые затем слущиваются с поверхности эпидермиса. В эпидермисе кожи клетки могут находиться в периоде G0, периоде G1, периоде G2 и в периоде S. Ткани с часто делящимися клетками поражаются сильнее тканей с редко делящимися клетками, потому что ряд химических и физических факторов разрушают микротубулы веретена деления. МИТОЗ Митоз принципиально отличается от прямого деления или амитоза тем, что во время митоза происходит равномерное распределение хромосомного материала между дочерними клетками. Митоз делится на 4 фазы. 1-я фаза называется профазой, 2-я — метафазой, 3-я — анафазой, 4-я — телофазой. Если в клетке имеется половинный (гаплоидный) набор хромосом, составляющий 23 хромосомы (половые клетки), то такой набор обозначается символом In хромосом и 1с ДНК, если диплоидный — 2п хромосом и 2с ДНК (соматические клетки сразу после митотического деления), анеуплоидный набор хромосом — в аномальных клетках. |