Главная страница
Навигация по странице:

  • СИСТЕМА МАТЬ—ПЛОД

  • В подсистеме «плод»

  • Связующее звено (плацента) между двумя подсистемами

  • Гуморальный канал

  • Механизмы, препятствующие развитию иммунной реакции (конфликта) между организмом матери и плода.

  • Критические периоды.

  • Дифференцировка плода человека по мужскому типу.

  • Лекция 18. Лимфоидные органы. Лимфопоэз. Тимус (зобная, или вилочковая железа). Лекция 19. Пищеварительная система Лекция 20. Развитие и строение зубов Лекция 21. Желудок Лекция 22. Толстая кишка


    Скачать 2.12 Mb.
    НазваниеЛекция 18. Лимфоидные органы. Лимфопоэз. Тимус (зобная, или вилочковая железа). Лекция 19. Пищеварительная система Лекция 20. Развитие и строение зубов Лекция 21. Желудок Лекция 22. Толстая кишка
    Дата28.10.2019
    Размер2.12 Mb.
    Формат файлаdoc
    Имя файлаLektsii_Kuznetsov_Pugachyov-1.doc
    ТипЛекция
    #92319
    страница44 из 44
    1   ...   36   37   38   39   40   41   42   43   44

    Строение маточной части плаценты. Маточная часть плаценты состоит из базальной пластинки, от которой отходят септы (перегородки), отделяющие лакуны друг от друга. Маточная часть плаценты образовалась из децидуальной ткани — видоизмененной ткани функционального слоя эндо­метрия (базальной отпадающей оболочки — decidua basalis). В этой ткани содержатся децидуальные клетки, богатые включениями гликогена, липидов, витаминов. Эти клетки дифференцировались из соединительнотканных клеток эн­дометрия в результате их трансформации. Децидуальные клетки имеют овальную форму, овальное или круглое ядро, слабо оксифильную цитоплазму, четкие границы. Эти клетки выполняют трофическую функцию. Те децидуальные клетки, которые образовались из макрофагов, выполняют защитную функцию.

    В базальной пластинке (базальной отпадающей оболочке) и септах имеются клетки периферического цитотрофобласта. Эти клетки мигрировали из цитотрофобласта ворсин. При помощи клеток периферического цитотрофобласта «якорные» ворсины прикрепляются к материнской части плаценты. Клетки периферического цитотрофобласта вне­шне сходны с децидуальными клетками, но отличаются от них выраженной базофилией цитоплазмы.

    В лакунах базальной пластинки плаценты циркулирует материнская кровь. Эта кровь поступает через разрушенные ворсинами артерии, омывает ворсины и через зияющие отверстия разрушенных вен возвращается в кровеносную систему матки. Обновление крови в лакунах плаценты осу­ществляется через каждые 4 минуты.

    Периферическая часть базальной отпадающей оболочки прочно срастается с гладким хорионом. В результате этого образуется замыкательная пластинка, которая препятству­ет излиянию крови из лакун плаценты.

    Плацентарный барьер между кровью матери, циркулирую­щей в лакунах, и кровью плода, циркулирующей в капиллярах ворсин, включает 5 компонентов:

    1) трофобласт (цито- и синцитиотрофобласт);

    2) базальная мембрана цитотрофобласта;

    3) соединительнотканная строма ворсин;

    4) базальная мем­брана капилляров ворсин;

    5) эндотелий капилляров ворсин.

    Таким образом, в нормальных условиях кровь плода и кровь матери не смешиваются, они отделены друг от друга плацентарным барьером.

    Изменения плодной части плаценты происходят в соеди­нительнотканной строме ворсин и хориальной пластинки и в трофобласте, покрывающем ворсины и хориальную пластинку. Соединительнотканная строма ворсин вначале явля­ется довольно плотной, так как в ней содержится значитель­ное количество гиалуроновой кислоты. В этой строме мало фибробластов, макрофагов и еще меньше коллагеновых во­локон. В это время (6-8-я неделя) вокруг кровеносных сосудов дифференцируются соединительнотканные клетки стромы ворсин. Для нормальной функции фибробластов необходимо достаточное количество витаминов С и А. Если этих витами­нов будет мало, то нарушится связь плаценты с маткой. Бла­годаря большому содержанию гиалуроновой кислоты прони­цаемость стромы ворсин очень низкая. Поэтому низок обмен веществ между кровью матери и кровью плода. На ранней стадии эмбриогенеза эмбрион не нуждается в большом коли­честве продуктов питания, поэтому нет надобности в высо­ком обмене веществ.

    По мере того как плод растет, ему требуется все больше пи­тательных веществ. В это время повышается активность фермента гиалуронидазы, которая разрушает гиалуроновую кислоту, увеличивается проницаемость соединительноткан­ной стромы ворсин и улучшается питание зародыша. Про­цесс распада гиалуроновой кислоты и разрыхления соедини­тельной ткани ворсин продолжается до конца эмбриогенеза, что приводит к последовательному повышению обмена веществ между кровью плода и кровью матери. К концу эм­бриогенеза часть фибробластов стромы ворсин дифференци­руется в фиброциты, в строме увеличивается содержание коллагеновых волокон.

    Изменения трофобласта ворсин и хориалъной пластинки характеризуются тем, что на 2-м месяце эмбриогенеза цитотрофобласт истончается, а синцитиотрофобласт утолща­ется. На 3-м месяце эмбриогенеза истончается и синцитио­трофобласт. Во 2-й половине беременности (эмбриогенеза) синцитиотрофобласт замещается фибриноидной тканью, которая называется фибриноидом Лангерганса. Фибриноид Лангерганса образуется за счет компонентов плазмы крови и за счет продуктов распада трофобласта. Фи­бриноид Лангерганса выполняет такие же функции, как и трофобласт.

    Изменения маточной части плаценты заключаются в том, что внутренняя поверхность маточной части плацен­ты (базальной пластинки и септ) покрывается фибриноидом Рора. Фибриноид Рора принимает участие в обеспечении им­мунологического гомеостаза в системе мать—плод.

    Функции плаценты: 1) трофическая; 2) дыхательная; 3) вы­делительная; 4) барьерная; 5) эндокринная; 6) участие в регу­ляции сокращения миометрия матки.

    Трофическая функция заключается в поступлении в орга­низм плода из крови лакун питательных веществ, витаминов, электролитов и других необходимых плоду веществ. Вода и электролиты проникают через плацентарный барьер путем диффузии или с участием пиноцитозных везикул. Иммуногло­булины (Ig) поступают в организм плода при помощи пиноци­тозных пузырьков симпластотрофобласта. Через плаценту в околоплодные воды могут поступать иммуноглобулины класса G и A (IgG, IgA).

    Дыхательная функция проявляется в обмене кислорода и углекислого газа между кровью плода и кровью матери.

    Выделительная функция заключается в выделении про­дуктов обмена веществ из организма плода в кровь лакун плаценты, которые затем через материнские почки выводят­ся из ее организма.

    Барьерная функция обеспечивает задержание поступле­ния болезнетворных бактерий и различных вредных веществ из крови матери в кровь плода. Однако через плацентарный барьер из крови матери в кровь плода проникают вирус СПИ­Да, вирус коревой краснухи, бледная спирохета сифилиса, алкоголь, никотин и лекарственные вещества. Если мать больна сифилисом или поражена ВИЧ-инфекцией (вирусом СПИДа), то рожденный от такой матери плод будет болен эт­ими заболеваниями. Если мать во время беременности пере­несла коревую краснуху, то рожденный от нее плод будет иметь дефекты физического развития.

    Эндокринная функция проявляется в том, что в трофобласте вырабатываются гормоны: плацентарный лактоген, хорионический гонадотропин, прогестерон, эстроген, инсулин и другие гормоны. Плацентарный лактоген стимулирует функцию желтого тела, участвует в регуляции обмена углево­дов и белков и в формировании сурфактантного комплекса легких. Хорионический гонадотропин стимулирует синтез АКТГ в гипофизе. Прогестерон подавляет развитие иммун­ной реакции отторжения плода материнским организмом, стимулирует рост матки. Эстрогены стимулируют рост матки за счет гиперплазии и гипертрофии ее тканевых элементов.

    Участие плаценты в регуляции сокращения миометри* матки проявляется в том, что в ней вырабатываются гистаминаза и моноаминоксидаза. Эти ферменты разрушают гистамин, серотонин, тирамин, которые вызывают сокраще­ние мускулатуры матки. К концу беременности выделение ги- стаминазы и моноаминоксидазы прекращается, поэтому гистамин, серотонин и тирамин не разрушаются и в результате их количество увеличивается. Под влиянием этих веществ и катехоламинов начинается сокращение миометрия и из­гнание плода из матки (начинаются роды).

    Пупочный канатик (funiculus umbilicalis) развивается из амниотической ножки, соединяет плод с плацентой. Основой пупочного канатика является слизистая ткань, которая со­держит большое количество гиалуроновой кислоты, благода­ря чему пупочный канатик обладает высокой упругостью. Поэтому при изгибах или сжатии пупочного канатика прохо­дящие в нем артерии и вена не сдавливаются и не нарушает­ся кровоснабжение плода.

    В слизистой ткани пупочного канатика имеются фибро- бластоподобные клетки и макрофаги. По пупочному кана­тику проходят 3 кровеносных сосуда: одна пупочная вена и две пупочные артерии. По пупочной вене к плоду течет ар­териальная кровь, по артериям от плода— венозная. Кроме того, в состав пупочного канатика входят остатки желточ­ного мешка и аллантоиса. Стенка желточного мешка обыч­но выстлана кубическим эпителием, аллантоиса — упло­щенным.

    Снаружи пупочный канатик покрыт амниотической оболочкой.

    СИСТЕМА МАТЬ—ПЛОД

    Эта система складывается из подсистемы «мать» и подси­стемы «плод». Связь между этими подсистемами обеспечива­ется плацентой (связующее звено). В каждой подсистеме имеются рецепторные механизмы, регуляторные и исполни­тельные (рабочие) органы.

    В подсистеме «мать» имеются термо-, хемо- и барорецепторы, заложенные в стенке матки, — это рецепторные меха­низмы. К регуляторным механизмам относятся высшие нер­вные центры, заложенные в височной доле, ретикулярной формации среднего мозга и в гипоталамусе; к этим механиз­мам относится и гипоталамо-эндокринная система, включа­ющая эндокринные органы матери. К этой системе можнс отнести и плаценту, в которой вырабатываются лактопла Центарный, гемохориальный и другие гормоны. Гемохоральный гормон стимулирует секрецию АКТГ в гипофизе матери. Под влиянием АКТГ выделяются глюкокортикоиды коры материнских надпочечников.

    Благодаря активации функции эндокринных органов гор­мональный фон у беременной повышен.

    К исполнительным механизмам относятся практически все органы материнского организма: сердечно-сосудистая, дыхательная, выделительная, пищеварительная и другие системы.

    При раздражении рецепторных окончаний матки импуль­сы поступают в регуляторные механизмы, а оттуда — в ис­полнительные органы. В результате этого изменяются часто­та сердечных сокращений, артериальное давление, глубина и частота дыхания, функциональная активность мочевой си­стемы, обменные процессы. Все эти изменения направлены на поддержание гомеостаза в организме матери и создание оптимальных условий для развития плода.

    В подсистеме «плод» рецепторными механизмами явля­ются рецепторы, заложенные в устье сосудов пупочного канатика, печеночной вене, стенке кишечника и коже. Ре­гуляторные механизмы представлены высшими нервными центрами, которые начинают созревать на 3-м месяце эм­бриогенеза. В это время плод начинает двигаться. На 3-м месяце начинает функционировать гипофиз, на 6-м меся­це — кора надпочечников, секретирующая кортикостероиды и дегидроапиандростерон, оказывающий влияние на синтез хорионического гонадотропина плацентой. В это же время формируется центр газообмена.

    Исполнительные механизмы представлены сердечно-со­судистой и выделительной системами. При раздражении ре­цепторов плода изменяются его сердцебиение, артериальное давление, выделение мочи в амниотическую полость, обмен веществ, синтез и выделение гормонов (глюкокортикоидов, инсулина и др.).

    Если в организме матери слабо функционирует какой-ли­бо орган, то у плода функция этого органа повышена. Напри­мер, если в поджелудочной железе матери вырабатывается мало инсулина, то поджелудочная железа плода вырабатыва­ет его в большом количестве.

    Связующее звено (плацента) между двумя подсистемами обеспечивает связь между плодом и матерью 2 путями: 1) че­рез гуморальный канал и 2) при помощи нервной системы (нервный канал). Кроме того, между матерью и плодом суще­ствует связь, минуя плаценту, — экстраплацентарный канал.

    Гуморальный канал связи плода с матерью наиболее ра­звит — это основной канал, так как между кровью матери и кровью плода постоянно осуществляется обмен веществ.

    Нервный канал выражен слабо, так как нервные волокна, идущие от организма матери, заканчиваются рецепторами в маточной части плаценты, т. е. они не проникают в орга­низм плода. Точно так же нервные волокна, идущие от плода, заканчиваются в устье пупочных сосудов и не переходят в ма­точную часть плаценты, т. е. непосредственной связи между нервной системой матери и плода нет. Однако химические, температурные, осмотические и т. п. изменения в плаценте воспринимаются и рецепторами матери, и рецепторами пло­да. Раздражения, воспринятые рецепторами матери, напра­вляются в центральную нервную систему матери, а раздраже­ния, воспринятые рецепторами плода, — в его центральную нервную систему. Поступившие в организм матери и плода нервные импульсы оказывают влияние на функцию органов как материнского, так и плодного организма.

    Экстраплацентарная связь может быть нервной и может осуществляться через плодные оболочки и амниотическую жидкость. Нервная связь проявляется в том, что растущее плодное яйцо оказывает давление на рецепторы, заложен­ные в стенке матки. Поступающие от этих рецепторов в цен­тральную нервную систему матери импульсы вызывают от­ветную реакцию и способствуют росту матки в соответствии с увеличением размеров плода.

    Экстраплацентарная связь через стенку плодного яйца и амниотическую жидкость заключается в том, что некото­рые витамины, иммуноглобулины могут от матери поступать через плодные оболочки в амниотическую полость и далее в организм плода.

    Механизмы, препятствующие развитию иммунной реакции (конфликта) между организмом матери и плода. Организм матери и организм плода являются генетически чужеродными, но иммунологического конфликта между ни­ми не возникает. Это обеспечивается 4 факторами:

    1) в трофобласте ворсин вырабатываются белки, которые угнетают иммунный ответ матери на антигены плода;

    2) хорионический гонадотропин, находящийся в трофобласте ворсин, угнетает (ингибирует) лимфоциты материнской крови (препят­ствует вступлению их в иммунную реакцию);

    3) в фибриноиде Лангганса вырабатываются гликопротеиды, которые имеют отрицательный заряд. Тккой же, отрицательный, заряд имеют и лимфоциты крови матери, поэтому материнские лимфо­циты не могут приблизиться к трофобласту ворсин плодной части плаценты;

    4) белки крови матери, которые для плода являются антигенами, в трофобласте расщепляются до ами­нокислот, а из этих аминокислот тут же, в трофобласте, син­тезируются новые белки (органоспецифические), не являю­щиеся антигенами по отношению к плоду.

    Критические периоды. Представление о критических периодах впервые дал австралийский ученый Норман Грег в 1944 году. В 1960 году русский ученый Светлов разработал теорию критических периодов. Согласно Светлову, критиче­ский период — это кратковременный период, в течение кото­рого происходит сложная перестройка всего организма или его отдельного органа. Во время критического периода про­исходит пролиферация, детерминация и дифференцировка клеток. При наступлении критического периода организм обладает повышенной чувствительностью к различным вредным воздействиям.

    В онтогенезе насчитывается 9 критических периодов, в эмбриогенезе — 5.

    1-й критический период — прогенез (развитие половых клеток);

    2-й — оплодотворение;

    3-й — имплантация (на 7-й день после оплодотворения);

    4-й — развитие основных зачат­ков осевых органов и плацентация (развитие плаценты) на­чинаются на 3-й, а заканчивается на 8-й неделе;

    5-й крити­ческий период совпадает с интенсивным развитием головно­го мозга (15-20-я неделя), в это время за 1 минуту образуется около 20 000 нервных клеток;

    6-й критический период — по­ловая дифференцировка организма и закладка основных функционирующих систем (20-24-я неделя);

    7-й — рождение;

    8-й — до 1 года жизни ребенка;

    9-й критический период — половое созревание.
    Дифференцировка плода человека по мужскому типу. Известно, что при оплодотворении яйцеклетки сперматозои­дом, несущим Y-хромосому, зародится эмбрион мужского пола. Это действительно так, но для этого необходимы еще некоторые дополнительные процессы, поскольку природа сделала установку на развитие женского организма. Итак, для развития мужского организма необходимо вносить опре­деленные коррективы. В частности, если на 5-6-й неделе эм­бриогенеза в развивающихся семенниках не начнет выраба­тываться ингибин — гормон регрессии парамезонефральных протоков, то не произойдет обратное развитие парамезоне­фральных протоков, из которых формируются эпителий яй­цеводов, матки и первичная эпителиальная выстилка влага­лища. Если на 9-й неделе эмбриогенеза между половыми щнурами не появятся интерстициальные клетки, вырабаты­вающие тестостерон, то из мезонефрального протока не будут формироваться проток придатка, семявыносящий и семявыбрасывающий протоки. Если во 2-й половине эмбриоге­неза не появится новая генерация интерстициальных кле­ток, вырабатывающих тестостерон, то не начнется половая дифференцировка гипоталамуса по мужскому типу и родится гермафродит.





    1 Ян Евангелист Пуркинье - чешский врач и физиолог

    2 В.А. Бец (1834-1894) – киевский анатом, открыл в V слое коры ГМ гигантские пирамидные клетки и обнаружил разницу в клеточном составе различных участков слоев мозговой коры в 1874 году. Положил начало учению о цитоархитектонике мозговой коры.

    3 А.С. Догель – русский гистолог и эмбриолог, приват-доцент Казанского университета

    4 ПНФ — предсердный натрийуретический фактор

    1   ...   36   37   38   39   40   41   42   43   44


    написать администратору сайта