Лекция 18. Лимфоидные органы. Лимфопоэз. Тимус (зобная, или вилочковая железа). Лекция 19. Пищеварительная система Лекция 20. Развитие и строение зубов Лекция 21. Желудок Лекция 22. Толстая кишка
Скачать 2.12 Mb.
|
Профаза. Профаза делится на раннюю и позднюю. Во время ранней профазы происходит спирализация хромосом, и они становятся видны в виде тонких нитей и образуют плотный клубок, т. е. образуется фигура плотного клубка. При наступлении поздней профазы хромосомы еще больше спирализуются, в результате чего закрываются гены ядрышковых организаторов хромосом. Поэтому прекращаются транскрипция рРНК и образование субъединиц хромосом, и ядрышко исчезает. Одновременно с этим происходит фрагментация ядерной оболочки. Фрагменты ядерной оболочки свертываются в небольшие вакуоли. В цитоплазме уменьшается количество гранулярной ЭПС. Цистерны гранулярной ЭПС фрагментируются на более мелкие структуры. Количество рибосом на поверхности мембран ЭПС резко уменьшается. Это приводит к уменьшению синтеза белков на 75 %. К этому моменту происходит удвоение клеточного центра. Образовавшиеся 2 клеточных центра начинают расходиться к полюсам. Каждый из вновь образовавшихся клеточных центров состоит из 2 центриолей: материнской и дочерней. С участием клеточных центров начинает формироваться веретено деления, которое состоит из микротубул. Хромосомы продолжают спирализоваться, и в результате образуется рыхлый клубок хромосом, расположенный в цитоплазме. Таким образом, поздняя профаза характеризуется рыхлым клубком хромосом. Метафаза. Во время метафазы становятся видимыми хроматиды материнских хромосом. Материнские хромосомы выстраиваются в плоскости экватора. Если смотреть на эти хромосомы со стороны экватора клетки, то они воспринимаются как экваториальная пластинка (lamina equatorialis). В том случае, если смотреть на эту же пластинку со стороны полюса, то она воспринимается как материнская звезда (monastr). Во время метафазы завершается формирование веретена деления. В веретене деления видны 2 разновидности микротубул. Одни микротубулы формируются от клеточного центра, т. е. от центриоли, и называются центриолярными микротубулами (microtubuli cenriolaris). Другие микротубулы начинают формироваться от кинетохор хромосом. Что такое кинетохоры? В области первичных перетяжек хромосом имеются так называемые кинетохоры. Эти кинетохоры обладают способностью индуцировать самосборку микротубул. Вот отсюда и начинаются микротубулы, которые растут в сторону клеточных центров. Таким образом, концы кинетохорных микротубул заходят между концами центрио- лярных микротубул. Анафаза. Во время анафазы происходит одновременное отделение дочерних хромосом (хроматид), которые начинают двигаться одни к одному, другие к другому полюсу. При этом появляется двойная звезда, т. е. 2 дочерние звезды (diastr). Движение звезд осуществляется благодаря веретену деления и тому, что сами полюса клетки несколько удаляются друг от друга. Механизм, движения дочерних звезд. Это движение обеспечивается тем, что концы кинетохорных микротубул скользят вдоль концов центриолярных микротубул и тянут хроматиды дочерних звезд в сторону полюсов. Телофаза. Во время телофазы происходит остановка движения дочерних звезд и начинают формироваться ядра. Хромосомы подвергаются деспирализации, вокруг хромосом начинает формироваться ядерная оболочка (нуклеолемма). Поскольку деспирализации подвергаются фибриллы ДНК хромосом, постольку начинается транскрипция РНК на открывшихся генах. Так как происходит деспирализация фибрилл ДНК хромосом, в области ядрышковых организаторов начинают транскрибироваться рРНК в виде тонких нитей, т. е. формируется фибриллярный аппарат ядрышка. Затем к фибриллам рРНК транспортируются ри- босомные белки, которые комплексируются с рРНК, в результате чего формируются субъединицы рибосом, т. е. образуется гранулярный компонент ядрышка. Это происходит уже в поздней телофазе. Цитотомия, т. е. образование перетяжки. При образовании перетяжки по экватору происходит впячивание цитолеммы. Механизм впячивания следующий. По экватору располагаются тонофиламенты, состоящие из сократительных белков. Вот эти тонофиламенты и втягивают цитолемму. Затем происходит отделение цитолеммы одной дочерней клетки от другой такой же дочерней клетки. Так, в результате митоза, формируются новые дочерние клетки. Дочерние клетки в 2 раза меньше по массе в сравнении с материнской. В них также меньше количество ДНК — соответствует 2с, и вдвое меньше количество хромосом — соответствует 2п. Так, митотическим делением, заканчивается клеточный цикл. Биологическое значение митоза заключается в том, что за счет деления происходит рост организма, физиологическая и репаративная регенерация клеток, тканей и органов. ПАТОЛОГИЯ МИТОЗА. АНЕУПЛОИДНЫЕ КЛЕТКИ Разрушение веретена деления наблюдается при понижении температуры клетки и при воздействии на нее (клетку) колхицином, в результате чего начинается распад микротубул веретена и прекращение деления. Нарушение деления клетки при увеличении количества центросом имеет место, когда вместо 2 цитоцентров образуются 3 или 4. В таком случае формируются 2 или больше веретен деления, в результате чего материнская клетка делится на 3 и более клеток. В ядре каждой такой клетки будет содержаться неправильный, т. е. анеуплоидный, набор хромосом. Хромосомная аберрация возникает при воздействии на ткань ультрафиолетовыми или радиоактивными лучами. Во время анафазы митоза часть такой поврежденной хромосомы может отделиться от ее плеча и после телофазы окажется в одной из дочерних клеток. Этот обломок хромосомы окружен нуклеолеммой и представляет собой микроядро. Хромосомная аберрация может проявляться в том, что хромосомы могут склеиться друг с другом, при этом 2 первичные перетяжки такой сдвоенной хромосомы располагаются в разных местах и растягиваются к противоположным полюсам. При расхождении дочерних звезд эта пара хромосом займет положение вдоль оси веретена деления. В таком случае дочерние звезды будут соединены «мостиком». Во всех случаях хромосомной аберрации содержание хромосом в ядре будет анеуплоидным. Амитоз. Этот тип деления характеризуется тем, что сначала появляется перетяжка ядра, которая делит ядро не обязательно на абсолютно равные части, затем перетяжкой разделяется цитоплазма. При амитозе хромосомный материал ядра материнской клетки может распределяться неравномерно между дочерними клетками. Этим амитоз принципиально отличается от митоза. Прямым делением разделяются клетки, которые нельзя считать нормальными. Поэтому такое деление тоже считается ненормальным. ПОЛИПЛОИДИЯ. ЭНДОРЕПРОДУКЦИЯ Полиплоидия — это процесс увеличения количества хромосом в ядре клетки. В результате этого процесса образуются полиплоидные клетки. В процессе полиплоидии задействованы 2 механизма: 1) блокирование одной из фаз митоза; 2) нарушение цитотомии во время телофазы. Рассмотрим первый механизм, т. е. блокирование периода G2, профазы или метафазы. При этом неразделившаяся клетка вступает в период G1 с тетраплоидным набором хромосом (4п), потом в период S, после которого в ней будет 8с ДНК и 8п хромосом. Затем эта клетка вступает в профазу, потом в метафазу. В метафазной звезде будет 8п. Затем, во время анафазы, в расходящихся дочерних звездах будет по 4п хромосом. После телофазы в дочерних клетках будут тетраплоидные ядра. Второй механизм образования полиплоидных клеток наблюдается при нарушении цитотомии — после того как произошла анафаза, клетка вступила в телофазу, сформировались ядра, но цитотомии материнской клетки не произошло. В каждом из 2 ядер неразделившейся клетки содержится по 2п и 2с. Когда эта клетка вступит в период G1, затем в период S, то в его конце в каждом ядре неразделившейся клетки окажется по 4п и 4с. Потом эта клетка вступает в профазу, затем в метафазу. В формирующуюся материнскую звезду от каждого ядра поступит по 4п хромосом, т. е. в материнской звезде будет 8п. При расхождении дочерних звезд во время анафазы в каждой такой звезде будет по 4п хромосом. После телофазы в каждой дочерней клетке будет тетраплоидное ядро, т. е. в каждом ядре будет содержаться по 4п хромосом. В каких органах имеются полиплоидные клетки? В клетках печени — гепатоцитах, мегакариоцитах красного костного мозга, в гландулоцитах ацинусов слюнных желез, поджелудочной железы, в пигментном слое сетчатки глаза. При этом ядро может содержать 4п, 8п, 16п, 32п. Резко выраженная полиплоидия особенно характерна для мегакариоцитов красного костного мозга. Эндорепродукция — это последовательное многократное удвоение ДНК, в результате чего увеличивается набор хромосом, при этом хромосомы связаны тонкими нитями. Эти структуры называются политенами, характерными для клеток плаценты. МЕЙОЗ Мейоз — это такое деление, при котором в дочерних клетках оказывается половинный (гаплоидный) набор хромосом — 1n и 1с. Такое деление имеет место в процессе образования половых клеток. Рассмотрим процесс образования половых клеток в мужском организме, называемый сперматогенезом. Сперматогенез включает 4 периода: 1) период размножения; 2) период роста, или период профазы; 3) период созревания, который состоит из двух стадий: 1-го деления созревания и 2-го деления созревания; 4) период формирования (этот период мы рассматривать не будем). Период размножения. Размножающиеся (делящиеся) клетки в периоде размножения называются сперматогониями. Сперматогонии при делении претерпевают все фазы, характерные для митотического деления, т. е. после деления материнской (стволовой) сперматогонии образуются 2 дочерние сперматогонии с набором хромосом 2п и набором ДНК 2с, затем эти сперматогонии проходят весь клеточный цикл, и к предстоящему новому делению у них будет 4п и 4с. Вот эти сперматогонии — с 4п и 4с — вступают во 2-й период сперматогенеза — период роста, или период профазы, 1-го деления мейоза. С этого момента клетки называются сперматоцитами 1 -го порядка. Период роста. В процессе развития сперматоцитов 1-го порядка имеют место 5 фаз: лептотена, зиготена (синаптена), пахитена, диплотена и диакинез. Лептотена характеризуется активной спирализацией хромосом ядра, которые становятся видимыми, напоминающими тонкие нити. Затем наступает зиготена (синаптена). Во время зиготены гомологичные хромосомы приближаются друг к другу и соединяются вместе, перекрещиваются (кро- сенговер). Объединившиеся хромосомы обмениваются генами. Пара объединившихся хромосом называется бивалентом. Сколько бивалентов в ядре сперматоцита 1 -го порядка в фазе зиготены? Их количество составляет 23. Затем наступает пахитена. Во время пахитены каждая из хромосом бивалента подвергается дальнейшей спирализации, но при этом она укорачивается и утолщается. Между хроматидами хромосом бивалента появляются заметные щели. После этого наступает диплотена, во время которой хроматиды хромосом бивалента начинают расходиться, но оказываются связанными в области перекреста. Потом наступает диакинез, во время которого происходит дальнейшая спирализация хромосом, в результате чего в конце профазы образуются тетрады. Их количество равно 23. Каждая тетрада состоит из 4 монад, или хроматид. Таким образом, в ядре сперматоцита 1 -го порядка в конце профазы будет 23 тетрады или 92 монады. Затем клетка вступает в 1-е деление созревания. Период созревания. 1 -е деление созревания начинается с метафазы. В метафазе в материнской звезде будет 23 тетрады. Тетрады выстраиваются в плоскости экватора таким образом, что одна половинка тетрады обращена к одному полюсу клетки, вторая — к другому. Во время анафазы половинки тетрад, называемые диадами, расходятся к полюсам. Затем, в результате телофазы, из сперматоцита 1-го порядка образуются 2 новые клетки, называемые сперматоцитами 2-го порядка. В каждом сперматоците 2-го порядка будет по 23 диады (2n) или 46 монад. Сперматоциты 2-го порядка, минуя период S, период G2 и профазу, сразу вступают в метафазу 2-го деления созревания. В материнской звезде сперматоцита 2-го порядка будет 23 диады, которые выстраиваются в плоскости экватора таким образом, что одна половинка диады обращена к одному полюсу, вторая — к другому. Эти половинки называются монадами. Во время анафазы дочерние звезды, состоящие из монад, расходятся к полюсам. Во время телофазы 2-го деления созревания образуются 2 новые клетки, называемые сперматидами. В сперматидах будет гаплоидный набор хромосом (1n). Строение митотических хромосом. Митотические хромосомы появляются в период митоза. Они особенно хорошо видны во время метафазы и анафазы. Во время метафазы видно, что каждая материнская хромосома состоит из двух сестринских хромосом, или хроматид. Каждая хромосома состоит из одной молекулы ДНК, которая уложена особым образом и приобретает характерную форму. В каждой хромосоме есть первичная перетяжка, или центромер. Участки хромосомы, отходящие от первичной перетяжки, называются плечами хромосомы. Если плечи хромосомы имеют одинаковую или примерно одинаковую длину, то такая хромосома называется метоцентрической; если плечи хромосомы явно неодинаковой длины, то такая хромосома называется субметоцентрической; если одно плечо хромосомы явно многократно длиннее другого, то такая хромосома называется акроцентрической. Концы плеч хромосомы называются теломерами. Кроме первичной перетяжки, в некоторых хромосомах есть вторичные перетяжки. Вторичная перетяжка — это ядрышковый организатор. Участок плеча хромосомы между вторичной перетяжкой и теломером называется спутником (сателлитом). Набор хромосом в ядре человека составляет кариотип. Чем он характеризуется? Кариотип характеризуется количеством, размерами и особенностями строения хромосом. Все хромосомы ядра человека разделяются на 7 групп, которые обозначаются буквами латинского алфавита от А до G. В каждой группе хромосомы морфологически похожи друг на друга, но хромосомы разных групп отличаются. Чтобы различить хромосомы друг от друга в одной группе, применяется метод дифференцированного окрашивания. При дифференцированном окрашивании на плечах хромосом появляются светлые и темные полосы. Причем рисунок, образованный этими полосами, для каждой хромосомы так же индивидуален, как отпечатки пальцев человека. Поэтому благодаря дифференцированному окрашиванию можно отличить хромосомы друг от друта. РЕАКЦИЯ КЛЕТКИ НА ВНЕШНИЕ ВОЗДЕЙСТВИЯ При воздействии неблагоприятных внешних химических, физических и биологических факторов на клетку в ней возникают структурные и функциональные нарушения. В зависимости от интенсивности, продолжительности и характера воздействия такая клетка может либо адаптироваться к новым условиям и возвратиться в исходное состояние, либо погибнуть. Изменения в цитоплазме поврежденной клетки. Цитоплазма утрачивает способность к гранулообразованию. В нормальной клетке частицы краски, поступившие в ее цитоплазму, заключаются в гранулы. Цитоплазма и кариоплазма при этом остаются светлыми. При утрате способности к гранулообразованию гранулы не образуются, а цитоплазма и кариоплазма диффузно окрашиваются. Изменения в ядре. В ядре начинается отек перинуклеарного пространства, его расширение. Хроматин конденсируется в грубые глыбки, коагулируется. Это называется пикнозом. Нарушается регуляция белкового синтеза. В дальнейшем ядро разрывается на фрагменты. Это называется кариорексисом. В конечном итоге ядро подвергается лизису — кариолизис. Изменения митохондрий. На начальном этапе митохондрии сжимаются, затем набухают, округляются, их кристы укорачиваются и редуцируются, снижается синтез АТФ. В конечном итоге мембраны митохондрий разрываются, матрикс смешивается с гиалоплазмой. Изменения ЭПС. Цистерны гранулярной ЭПС фрагментируются и распадаются на вакуоли. Количество рибосом на поверхности мембран уменьшается, синтез белка снижается. Изменения комплекса Гольджи. Комплекс Гольджи может подвергнуться распаду в результате фрагментации его цистерн. Изменения лизосом. Количество первичных лизосом и автофагосом возрастает. Мембраны первичных лизосом разрываются. Выделившиеся из них ферменты осуществляют самопереваривание (лизис) клетки. В результате нарушения проницаемости клеточных мембран, структуры и функции органелл нарушается метаболизм клетки, что может сопровождаться накоплением в цитоплазме липидов (жировая дистрофия), гликогена (углеводная дистрофия) и белков (белковая дистрофия). При слабой интенсивности и кратковременном воздействии повреждающих факторов цитофизиологические изменения клетки могут быть обратимыми. При этом в одних случаях структура и функция клетки полностью восстанавливаются. Такая клетка продолжает нормально функционировать. В других случаях цитофизиология клетки восстанавливается не полностью. После этого клетка в течение некоторого времени продолжает функционировать, но вскоре погибает без видимых причин. Злокачественное перерождение клетки. В некоторых случаях в клетке нарушаются регуляторные процессы. Это может привести к нарушению ее дифференцировки, в основе которой лежат изменения в генах ДНК хромосом. В результате этого клетка приобретает относительную автономию, способность к безудержному делению, метастазированию. Вновь образовавшиеся дочерние клетки наследуют вышеуказанные свойства. Опухоль начинает быстро расти. НЕКРОЗ И АПОПТОЗ КЛЕТКИ Некроз клетки происходит в процессе ее ^запрограммированной гибели и наблюдается после ее повреждения. При этом нарушается проницаемость клеточных мембран, расширяются компартменты, повреждается структура и нарушается функция ЭПС, комплекса ГЬльджи, митохондрий, увеличивается количество аутофагосом и в конечном итоге все завершается лизисом клетки. Апоптоз клетки — это запрограммированная гибель клетки. Такая гибель клетки связана с тем, что в ДНК хромосом имеются гены, в которых закодирована программа гибели клетки. Эта программа запускается в 2 случаях: 1) при воздействии на клетку некоторых белков или гормонов; 2) если на клетку не поступают регулирующие сигналы. При воздействии на клетку некоторых белков или гормонов в ее цитоплазме синтезируется сигнальная молекула (цАМФ или кальмодулин), которая запускает программу гибели клетки. Пример: глюкокортикоиды коры надпочечников при их повышенном содержании в крови захватываются рецепторами наружной мембраны кариолеммы лимфоцита и через сигнальную молекулу запускают программу саморазрушения клетки. При отсутствии регулирующих функцию клетки сигналов тоже синтезируется сигнальная молекула, которая активирует ген, содержащий программу гибели клетки. Примеры: 1) в семеннике вырабатываются сигналы, регулирующие функции клеток предстательной железы; если кастрировать самца, то прекращается поступление регулирующих сигналов, что сопровождается саморазрушением клеток предстательной железы; 2) в гипофизе вырабатываются гормоны, регулирующие развитие и функцию желтого тела яичников; когда же прекращается выделение этих гормонов из гипофиза, начинается саморазрушение клеток желтого тела, в результате чего оно полностью исчезает. |