Лекция 18. Лимфоидные органы. Лимфопоэз. Тимус (зобная, или вилочковая железа). Лекция 19. Пищеварительная система Лекция 20. Развитие и строение зубов Лекция 21. Желудок Лекция 22. Толстая кишка
Скачать 2.12 Mb.
|
Кератиноциты имеют призматическую форму, овальное или слегка вытянутое ядро, богаты РНК, имеют органеллы общего значения. В их цитоплазме хорошо развиты тонофибриллы, состоящие из фибриллярного белка, способного к ороговению. Клетки друг с другом соединяются при помощи десмосом, с базальной мембраной — при помощи полудесмосом. Среди керотиноцитов имеются диффузно расположенные стволовые клетки, которые подвергаются постоянному делению. Часть образовавшихся дочерних клеток вытесняется в следующий, шиповатый слой. В этом слое клетки продолжают делиться, затем утрачивают способность к митотическому делению. Благодаря способности клеток базального и шиповатого слоев к делению, оба эти слоя называются ростковым слоем. Меланоциты образуют второй дифферон и развиваются из нервного гребня. Они имеют отростчатую форму, светлую цитоплазму и слабо развитые органеллы общего значения, не имеют десмосом, поэтому лежат свободно, среди кератиноцитов. В цитоплазме меланоцитов имеются 2 фермента: 1) ОФА-оксидаза и 2) тирозиназа. При участии этих ферментов в меланоцитах происходит синтез пигмента меланина из аминокислоты тирозина. Поэтому в цитоплазме этих клеток видны гранулы пигмента, которые выделяются из меланоцитов и фагоцитируются кератиноцитами базального и шиповатого слоев. Клетки Меркеля развиваются из нервного гребня, имеют несколько более крупные размеры по сравнению с кератиноцитами, светлую цитоплазму; по своему функциональному значению относятся к чувствительным. Внутриэпидермальные макрофаги развиваются из моноцитов крови, имеют отростчатую форму, в их цитоплазме имеются органеллы общего значения, и в том числе хорошо развитые лизосомы; выполняют фагоцитарную (защитную) функцию. Внутриэпидермальные макрофаги вместе с лимфоцитами крови, проникшими в эпидермис, составляют иммунную систему кожи. В эпидермисе кожи происходит антигеннезависимая дифференцировка Т-лимфоцитов. Шиповатый слой состоит из нескольких рядов клеток неправильной формы. От поверхности этих клеток отходят Шипы, т. е. отростки. Шипы одной клетки соединяются с шипами другой клетки через десмосомы. В шипах проходят многочисленные фибриллы, состоящие из фибриллярного белка. Шиповатые клетки имеют неправильную форму. По мере удаления от базального слоя они и их ядра приобретают все более уплощенную форму. В их цитоплазме появляются кератиносомы, содержащие липиды. В шиповатом слое имеются еще отростки внутриэпидермальных макрофагов и меланоцитов. Зернистый слой состоит из 3-4 рядов клеток, которые имеют уплощенную форму содержат компактные ядра, бедны органеллами общего значения. В их цитоплазме синтезируются филагрин и кератоламинин; органеллы и ядра начинают разрушаться. В этих клетках появляются гранулы кера- тогиалина, состоящие из кератина, филагрина и продуктов начинающегося распада ядра и органелл. Кератоламинин выстилает цитолемму, укрепляя ее изнутри. В кератиноцитах зернистого слоя продолжают формироваться кератиносомы, в которых содержатся липидные вещества (холестеринсульфат, церамиды) и ферменты. Кератиносомы путем экзоцитоза поступают в межклеточные пространства, где из их липидов образуется цементирующее вещество, склеивающее клетки зернистого, блестящего и рогового слоев. По мере дальнейшей дифференцировки клетки зернистого слоя вытесняются в следующий, блестящий слой. Блестящий слой (stratum lucidum) характеризуется распадом ядер клеток этого слоя, иногда полным разрывом ядер (кариорексис), иногда — растворением (кариолизис). Гранулы кератогиалина в их цитоплазме сливаются в крупные структуры, включающие фрагменты микрофибрилл, пучки которых цементируются филагрином, что означает дальнейшее ороговение кератина (фибриллярного белка). В результате этого процесса образуется элеидин. Элеидин не окрашивается, но зато хорошо преломляет лучи света и поэтому блестит. По мере дальнейшей дифференцировки клетки блестящего слоя смещаются в следующий, роговой слой. Роговой слой (stratum corneum) — здесь клетки окончательно утрачивают ядра. Вместо ядер остаются пузырьки, заполненные воздухом, а элеидин подвергается дальнейшему ороговению и преобразуется в кератин. Клетки превращаются в чешуйки, в цитоплазме которых содержатся кератин и остатки тонофибрилл, цитолемма утолщается за счет кератоламинина. По мере того как разрушается цементирующее вещество, связывающее чешуйки, последние слущиваются с поверхности кожи. В течение 10-30 суток происходит полное обновление эпидермиса кожи. Не все участки эпидермиса кожи имеют 5 слоев. 5 слоев имеются только в толстом эпидермисе: на ладонной поверхности кистей рук и подошвах стоп ног. Остальные участки эпидермиса не имеют блестящего слоя, и поэтому там он (эпидермис) тоньше. Функции многослойного плоского ороговевающего эпителия: 1) барьерная; 2) защитная; 3) обменная. Переходный эпителий (epithelium transitinale) выстилает мочевыделительные пути, развивается из мезодермы, частично — из аллантоиса. Этот эпителий включает 3 слоя: базальный, промежуточный и поверхностный. Клетки базалъного слоя мелкие, темные; промежуточного — более крупные, светлые, имеют грушевидную форму; поверхностного слоя — самые крупные, содержат одно или несколько округлых ядер. В остальных многослойных эпителиях поверхностные клетки мелкие. Эпителиоциты поверхностного слоя переходного эпителия соединяются друг с другом при помощи замыкательных пластинок. Эпителий называется переходным потому, что при растяжении стенки мочевыделительных органов, например мочевого пузыря, в момент наполнения его мочой толщина эпителия уменьшается, поверхностные клетки уплощаются. При удалении мочи из мочевого пузыря эпителий утолщается, поверхностные клетки приобретают куполовидную форму. Функция этого эпителия — барьерная (препятствует выходу мочи через стенку мочевого пузыря). ЖЕЛЕЗИСТЫЙ ЭПИТЕЛИЙ Клетки железистого эпителия входят в состав желез и называются гланду лоцитами. Различают экзокринные и эндокринные железы. Экзокринные железы выделяют секрет на поверхность тела или же в полости организма. Эндокринные железы выделяют секрет в кровь или лимфу. Железы могут быть как мелкими и входить в состав отдельных органов (железы желудка, пищевода, трахеи, бронхов), так и большими, массой до 1 кг и более (печень). Обычно гландулоциты экзокринных и эндокринных желез секретируют циклично. Секреторный цикл состоит из 4 фаз: поступление исходных продуктов для синтеза секрета; синтез и накопление секрета; выделение секрета; восстановление клетки после выделения секрета. 1-я фаза характеризуется тем, что из кровеносных капилляров через базальную мембрану в клетку поступают исходные продукты: вода, аминокислоты, белки, углеводы и минеральные соли. 2-я фаза характеризуется тем, что на ЭПС поступают исходные вещества и происходит синтез секрета. Далее эти вещества по канальцам ЭПС транспортируются в сторону комплекса Гольджи и накапливаются в периферических отделах его цистерн. Затем они отделяются от цистерн и превращаются в секреторные гранулы, которые накапливаются в апикальной части клетки. В 3-й фазе, в зависимости от характера выделения секрета, различают 3 типа секреции: а) мерокриновый; б) апокриновый, который подразделяется на макро- и микроапокриновый, и в) голокриновый. Мерокриновый тип секреции характеризуется тем, что секрет выделяется путем экзоцитоза без разрушения клетки. Микроапокриновый тип секреции характеризуется разрушением микроворсинок, макроапокриновый — отрывом и разрушением апикальной части клетки. При голокриновом типе секреции разрушается вся клетка и входит в состав секрета. Мерокриновый тип секреции характерен для слюнных желез, апокриновый — для потовых и молочных желез, поэтому в просветах секреторных отделов лактирующих молочных желез встречаются фрагменты цитоплазмы клеток; голокриновый тип секреции характерен для сальных желез кожи. При 4-й фазе происходит восстановление разрушенных структур клетки. При мерокриновом типе секреции клетка не нуждается в восстановлении; при апокриновом типе происходит регенерация или восстановление апикальной части клетки; при голокриновом типе секреции вместо погибших образуются новые клетки путем митотического деления камбиальных клеток, лежащих на базальной мембране. Кроме того, существуют железы, клетки которых секретаруют спонтанно, или диффузно. В гландулоцитах таких клеток одновременно происходит и синтез и выделение секрета. К таким железам относится кора надпочечников. Экзокринные железы. Для них характерно то, что они обязательно состоят из концевых отделов (portio terminalis) и выводных протоков (ductus excretorius). Эти железы вырабатывают секрет и выделяют его либо на поверхность тела, либо в полости органов. К экзокринным железам относятся слюнные железы (околоушная, подчелюстная, подъязычная), малые слюнные железы (губные, щечные, язычные, нёбные), железы пищевода, желудка, кишечника. Эндокринные железы — их секрет называется гормоном и выделяется в кровь или лимфу. Поэтому в эндокринных железах нет выводных протоков, но зато они лучше кровоснабжаются, чем экзокринные. Примерами эндокринных желез являются щитовидная и околощитовидные железы, гипофиз, мозговой эпифиз и надпочечники. Классификация экзокринных желез. Экзокринные железы делятся на простые и сложные. Простыми называются такие железы, у которых выводной проток не ветвится. Простые железы могут быть разветвленными и неразветвленными. Неразветвленными называются такие железы, у которых концевой отдел не ветвится. Если концевые отделы простой железы подвергаются ветвлению, то такая железа называется разветвленной. В зависимости от формы концевых отделов простые железы делятся на альвеолярные, если концевой отдел имеет форму пузырька или альвеолы, и трубчатые, если концевой отдел имеет форму трубочки. Таким образом, простые железы классифицируются на простые неразветвленные и простые разветвленные, которые могут быть альвеолярными или трубчатыми. В сложных альвеолярных железах выводные протоки ветвятся. Если в сложной железе ветвятся и выводные протоки, и концевые отделы, то такая железа называется сложной разветвленной. Если в сложной железе концевые отделы не ветвятся, то такая железа называется сложной неразветвленной. Если в сложной железе имеются только альвеолярные концевые отделы, то она называется сложной альвеолярной. Если в сложной железе имеются только трубчатые концевые отделы, то она называется сложной трубчатой железой. Если в сложной железе имеются и альвеолярные, и трубчатые концевые отделы, то она называется сложной трубчато-альвеолярной железой. Классификация экзокринных желез в зависимости от характера секрета. Если секрет слизистый, то железы называются слизистыми; если секрет белковый, или серозный, то и железы называются серозными; если железа выделяет и слизистый, и белковый секрет, то она называется смешанной; если железа выделяет сальный секрет, то она называется сальной. Таким образом, железы подразделяются на слизистые, серозные и сальные. Можно еще выделить молочные железы. Классификация желез в зависимости от типа секреции. Если железа выделяет секрет по мерокриновому типу, то она называется мерокриновой; если секретирует по апокриновому типу, то — апокриновой; если по голокриновому типу — голокриновой. Таким образом, по характеру секрета железы делятся на мерокриновые, апокриновые и голокриновые. Если железы развиваются из кожной эктодермы (слюнные, потовые, сальные, молочные, слезные), то их выводные протоки выстланы многослойным эпителием. Кроме того, в концевых отделах этих желез имеются миоэпителиальные клетки, расположенные между базальной поверхностью гландулоцитов и базальной мембраной. Значение миоэпителиальных клеток заключается в том, что при их сокращении сдавливается основание гландулоцитов, из которых при этом выделяется секрет. ЛЕКЦИЯ 5 КРОВЬ И ЛИМФА Кровь (sanquis) является составной частью системы крови. Система крови включает: 1) кровь, 2) органы кроветворения, 3) лимфу. Все компоненты системы крови развиваются из мезенхимы. Кровь локализуется в кровеносных сосудах и сердце, лимфа — в лимфатических сосудах. К органам кроветворения относятся: красный костный мозг, тимус, лимфатические узлы, селезенка, лимфатические узелки пищеварительного тракта, дыхательных путей и других органов. Между всеми компонентами системы крови существует тесная генетическая и функциональная связь. Генетическая связь заключается в том, что все компоненты системы крови развиваются из одного и того же источника. Функциональная связь между органами кроветворения и кровью заключается в том, что в крови постоянно в течение суток погибают несколько миллионов клеток. В то же время в органах кроветворения в нормальных условиях образуется точно такое же количество кровяных клеток, т. е. уровень форменных элементов крови отличается постоянством. Баланс между гибелью и новообразованием клеток крови обеспечивается регуляцией со стороны нервной и эндокринной систем, микроокружением и внутритканевой регуляцией в самой крови. Что такое микроокружение? Это клетки стромы и макрофаги, находящиеся вокруг развивающихся клеток крови в органах кроветворения. В микроокружении вырабатываются гемопоэтины, которые стимулируют процесс кроветворения. Что означает «внутритканевая регуляция»? Дело в том, что в зрелых гранулоцитах вырабатываются кейлоны, которые тормозят развитие молодых гранулоцитов. Существует тесная связь между кровью и лимфой. Эту связь можно продемонстрировать следующим образом. В соединительной ткани имеется основное межклеточное вещество (внутритканевая жидкость). В формировании межклеточного вещества принимает участие кровь. Каким образом? Из плазмы крови в соединительную ткань поступают вода, белки и другие органические вещества и минеральные соли. Это и есть основное межклеточное вещество соединительной ткани. Здесь же рядом с кровеносными капиллярами располагаются слепо заканчивающиеся лимфатические капилляры. Слепо заканчивающиеся — это значит, что они похожи на резиновый колпачок глазной пипетки. Через стенку лимфатических капилляров основное вещество поступает (дренируется) в их просвет, т. е. компоненты межклеточного вещества поступают из плазмы крови, проходят через соединительную ткань, проникают в лимфатические капилляры и преобразуются в лимфу Таким же путем из кровеносных капилляров в лимфатические могут поступать и форменные элементы крови, которые из лимфатических сосудов могут рециркулировать снова в кровеносные. Существует тесная связь между лимфой и органами кроветворения. Лимфа из лимфатических капилляров поступает в приносящие лимфатические сосуды, впадающие в лимфатические узлы. Лимфатические узлы — это одна из разновидностей органов кроветворения. Лимфа, проходя через лимфатические узлы, очищается от бактерий, бактериальных токсинов и других вредных веществ. Кроме того, из лимфатических узлов в протекающую лимфу поступают лимфоциты. Таким образом, лимфа, очищенная от вредных веществ и обогащенная лимфоцитами, поступает в более крупные лимфатические сосуды, затем в правый и грудной лимфатические протоки, которые впадают в вены шеи, т. е. очищенное и обогащенное лимфоцитами основное межклеточное вещество снова возвращается в кровь. Из крови вышло и в кровь вернулось. Существует тесная связь между соединительной тканью, кровью и лимфой. Дело в том, что как между соединительной тканью и лимфой происходит обмен веществ, так и между лимфой и кровью тоже осуществляется обмен веществ. Обмен веществ между кровью и лимфой происходит только через соединительную ткань. Строение крови. Кровь (sanquis) относится к тканям внутренней среды. Поэтому, как и все ткани внутренней среды, она состоит из клеток и межклеточного вещества. Межклеточным веществом является плазма крови, к клеточным элементам относятся эритроциты, лейкоциты и тромбоциты. В других тканях внутренней среды межклеточное вещество имеет полужидкую консистенцию (рыхлая соединительная ткань) или плотную консистенцию (плотная соединительная ткань, хрящевая и костная ткани). Поэтому различные ткани внутренней среды выполняют различную функцию. Кровь выполняет трофическую и защитную функции, соединительная ткань — опорно-механическую, трофическую и защитную, хрящевая и костная ткани — опорно-механическую и функцию механической защиты. Форменные элементы крови составляют примерно 40-45 %, все остальное — плазма крови. Количество крови в организме человека составляет 5-9 % от массы тела. Функции крови: 1) транспортная; 2) дыхательная; 3) трофическая; 4) защитная; 5) гомеостатическая (поддержание постоянства внутренней среды). Плазма крови включает 90-93 % воды, 6-7,5 % белков, среди которых — альбумины, глобулины и фибриноген, а остальные 2,5-4 % составляют другие органические вещества и минеральные соли. За счет солей поддерживается постоянное осмотическое давление плазмы крови. Если из плазмы крови удалить фибриноген, то останется сыворотка крови. Плазма крови имеет рН 7,36. Эритроциты. Эритроциты (erythrocytus) составляют в 1 л мужской крови 4-5,5×1012, у женщин несколько меньше, т. е. 3,7-5×1012. Повышенное количество эритроцитов называется эритроцитозом, пониженное — эритропенией. Эритроциты имеют различную форму. 80 % всех эритроцитов составляют эритроциты двояковогнутой формы (дискоциты); у них края толще (2-2,5 мкм), а центр тоньше (1 мкм), поэтому центральная часть эритроцита более светлая. Кроме дискоцитов имеются и другие формы: 1) планоциты; 2) стоматоциты; 3) двуямочные; 4) седловидные; 5) шаровидные, или сфероциты; 6) эхиноциты, у которых имеются отростки. Сфероциты и эхиноциты — это клетки, заканчивающие свой жизненный цикл. Диаметр дискоцитов может быть различным. 75 % дискоцитов имеют диаметр 7-8 мкм, они называются нормоцитами; 12,5 % — 4,5-6 мкм (микроциты); 12,5 % — более 8 мкм (макроциты). Эритроцит — это безъядерная клетка, или постклеточная структура, в нем отсутствуют ядро и органеллы. Плазмолемма эритроцита имеет толщину 20 нм. На поверхности плазмолеммы могут быть адсорбированы гликопротеиды, аминокислоты, протеины, ферменты, гормоны, лекарственные и другие вещества. На внутренней поверхности плазмолеммы локализованы гликолитические ферменты, Na+-ATФаза, К+-АТФаза. К этой поверхности прилежит гемоглобин. Плазмолемма эритроцитов состоит из липидов и белков примерно в одинаковом количестве, гликолипидов и гликопротеидов — 5 %. Липиды представлены 2 слоями липидных молекул. В состав наружного слоя входят фосфатидилхолин и сфингомиелин, в состав внутреннего слоя — фосфатидилсерин и фос- фатидилэтаноламин. Белки представлены мембранными (гликофорин и белок полосы 3) и примембранными (спектрин, белки полосы 4.1, актин). Гликофорин своим центральным концом связан с «узловым комплексом»; проходит через билипидный слой цитолеммы и выходит за его пределы, участвует в формировании гликокаликса и выполняет рецепторную функцию. Белок полосы 3 — трансмембранный гликопротеид, его полипептидная цепь много раз проходит в одном и другом направлении через билипидный слой, образует гидрофильные поры в этом слое, через которые проходят анионы НСО-3 и Сl- в тот момент, когда эритроциты отдают СО2, а анион НСО-з замещается анионом Сl-. Примембранный белок спектрин имеет вид нити длиной около 100 нм, состоит из 2 полипептидных цепей (альфаспектрина и бета-спектрина), одним концом связан с актиновыми филаментами «узлового комплекса», выполняет функцию цитоскелета, благодаря которому сохраняется правильная форма дискоцита. Спектрин связан с белком полосы 3 при помощи белка анкирина. «Узелковый комплекс» состоит из актина, белка полосы 4.1 и концов белков спектрина и гликофорина. Олигосахариды гликолипидов и гликопротеидов образуют гликокаликс. От них зависит наличие агглютиногенов на поверхности эритроцитов. Агглютиногены эритроцитов — А и В. Агглютинины плазмы крови — альфа и бета. Если в крови одновременно окажутся «чужой» агглютиноген А и агглютинин альфа или «чужой» агглютиноген В и агглютинин бета, то произойдет склеивание (агглютинация) эритроцитов. |