Главная страница

Биомеханика конспект лекций донской. Лекция. Биомеханика двигательных действий как систем целенаправленных движений


Скачать 0.93 Mb.
НазваниеЛекция. Биомеханика двигательных действий как систем целенаправленных движений
Дата08.09.2018
Размер0.93 Mb.
Формат файлаdocx
Имя файлаБиомеханика конспект лекций донской.docx
ТипЛитература
#50045
страница11 из 30
1   ...   7   8   9   10   11   12   13   14   ...   30

5.биомеханическая характеристика гибкости


Гибкостью называется способность выполнять движение с боль амплитудой. Для суставов целесообразнее пользоваться термином подвижность.

Для измерения гибкости (подвижности в суставах) необходимо измерить угол в соответствующем сочленении в крайне возможном положении между сочленявшимися звеньями. Показатели гибкости называют гониометрическими ("гони" - угол, греч.). Гибкость можно измерить также в линейной системе отсчёта (по Н.Г.Озолину) максимальной возможный наклон вперёд, стоя на возвышении), а также в пространстве (глобографический способ).

Выделяют активную и пассивную гибкость. Активная гибкость определяется в суставном движении за счёт активности мышечных групп. Пассивная гибкость определяется амплитудой рабочих точек достигаемой за счёт действия внешних сил. Показатели пассивной гибкости естественно, выше соответствующих показателей активной гибкости. Разность между ними принято называть дефицитом активной гибкости. Гибкость зависит от ряда условий: окружающей среды, разминки, времени суток, силы тяги мышц, участвующих в движении.

В спорте не следует добиваться предельного развития гибкости. Говорят о необходимой гибкости - при этом её величина должна несколько превосходить ту максимальную амплитуду, с которой выполняется движение ("запас гибкости").

Показано, что спортсмены с большими показателями гибкости имеют преимущество в спортивной технике, выполняя движение с большей амплитудой.
ЛЕКЦИЯ №5. ОЗДОРОВИТЕЛЬНАЯ НАПРАВЛЕННОСТЬ ФИЗИЧЕСКИХ УПРАЖНЕНИЙ И БИОМЕХАНИЧЕСКИЕ ТРЕБОВАНИЯ К ИХ ВЫПОЛНЕНИЮ

План

Биомеханика дыхания, сердца и сосудов, пищеварительной системы, опорно-двигательного аппарата,

Биомеханика глаза, органов слуха и равновесия.
Дыхание Обмен кислорода (02) и углекислоты (С02) между организмом и средой называется дыханием. Человеческий организм в процессе жизнедеятельности потребляет кислород (02) и выделяет углекислоту (С02). Здоровый мужчина среднего возраста и нормального сложения с массой тела 70 кг в условиях основного обмена потребляет за 1 мин. 250 мл 02 и выделяет около 200 мл углекислоты. При физической нагрузке потребление 02 и, соответственно, выделение С02 увеличивается в несколько раз. При этом повышение тканевого обмена обеспечивается не только пропорциональным увеличением потребления 02, возрастает также утилизация 02, в результате чего происходит более полное восстановление оксигемоглобина в тканях. Обеспечение организма нужным количеством 02 и выведением С02 возможно лишь при условии нормального течения и координированного изменения ряда последовательных актов. У человека дыхание осуществляется благодаря ряду последовательных процессов: 1) обмен газов между средой и легкими, что обычно обозначают как «легочную вентиляцию»; 2) обмен газов между альвеолами легких и кровью (легочное дыхание); 3) обмен газов между кровью и тканями. Наконец, газы переходят внутри ткани к местам потребления (для 02) и от мест образования (для С02) (клеточное дыхание). Движение газов в дыхательной системе и между средой и тканями происходит в результате разницы давлений. Пониженное давление 02 в ткани заставляет газ двигаться к ней. Для С02 градиент давления направлен в обратную сторону, и С02 переходит в окружающую среду. Известно, что давление водяных паров в организме выше, чем в окружающей среде, и, таким образом, при дыхании организм теряет воду.

Дыхательная система состоит из тканей и органов, обеспечивающих легочную вентиляцию и легочное дыхание (воздушные пути, легкие и элементы костно-мышечной системы). К воздухоносным путям относятся: нос, полость носа, носоглотка, гортань, трахея, бронхи и бронхиолы. Легкие состоят из бронхиол и альвеолярных мешочков, а также из артерий, капилляров и вен легочного круга кровообращения. К элементам костно-мышечной системы, связанным с дыханием, относятся ребра, межреберные мышцы, диафрагма и вспомогательные дыхательные мышцы.

Легкие Легкие представляют собой важнейшую структуру, осуществляющую физиологическую связь организма с окружающей средой:общая площадь их поверхности примерно в 30 раз больше, чем площадь кожи. В целом легкие имеют вид губчатых, пористых конусовидных образований, лежащих в обеих половинах грудной полости. Наименьший структурный элемент легкого — долька состоит из конеч- ной бронхиолы, ведущей в легочную бронхиолу и альвеолярный мешок. Стенки легочной бронхиолы и альвеолярного мешка образуют углубления — альвеолы. Стенки альвеол состоят из одного слоя эпителиальных клеток типа I и окружены легочными капиллярами. Принято считать, что общая поверхность
альвеол, через которую осуществляется газообмен, экспоненциально зависит от веса тела. С возрастом отмечается уменьшение площади поверхности альвеол.

Плевра Каждое легкое окружено мешком, образованным серозной оболочкой — плеврой. Наружный (париентальный) листок плевры примыкает к внутренней поверхности грудной стенки и диафрагме, внутренний (висцеральный) покрывает легкое. Щель между листками называется плевральной полостью. При движении грудной клетки внутренний листок обычно легко скользит по наружному. Давление в плевральной полости всегда меньше атмосферного (отрицательное). В условиях покоя внутриплевраль-ное давление у человека в среднем на 4,5 торр ниже атмосферного (—4,5 торр). Грудная полость. Грудная полость ограничена сзади первыми десятью грудными позвонками (см. рис. 17.13), последние два грудных позвонка функционально относятся к брюшной полости и не принимают активного участия в дыхании. Переднюю стенку грудной клетки образует грудина. Боковая стенка грудной клетки образована ребрами и реберными хрящами. Ребра лежат парами по обе стороны позвоночника. Каждое ребро наклонено вниз от уровня своего сочленения с позвонком и прикреплено к грудине ниже (см. рис. 17.16). Пространства между ребрами называется межреберным.

Дыхательные мышцы. Дыхательные мышцы — это те мышцы, сокращения которых изменяют объем грудной клетки. Мышцы, направляющиеся от головы, шеи, рук и некоторых верхних грудных и нижних шейных позвонков, а также наружные межреберные мышцы, соединяющие ребро с ребром, приподнимают ребра и увеличивают объем грудной клетки. Диафрагма — мышечно-сухожильная пластина, прикрепленная к позвонкам, ребрам и грудине, — отделяет грудную полость от брюшной (рис. 17.15). Это главная мышца, участвующая в нормальном вдохе. При усиленном вдохе сокращаются дополнительные группы мышц. При усиленном выдохе действуют мышцы, прикрепленные между ребрами (внутренние межреберные мышцы) к ребрам и нижним грудным и верхним поясничным позвонкам, а также мышцы брюшной полости; они опускают ребра и прижимают брюшные органы к расслабившейся диафрагме, уменьшая таким образом емкость грудной клетки. Дыхательные движения осуществляются за счет дыхательной мускулатуры. Расслабление всех связанных с дыханием мышц придает грудной клетке положение пассивного выдоха. Соответствующая мышечная активность может перевести это положение во вдох или же усилить выдох.

Механизм вдоха

Акт вдоха (инспирация) совершается вследствие увеличения объема грудной полости в трех направлениях

— вертикальном, сагиттальном и фронтальном. Это происходит вследствие поднятия ребер и опускания диафрагмы.В состоянии выдоха ребра опущены вниз; а в состоянии вдоха — принимают более горизонтальное положение, поднимаясь кверху; при этом нижний конец грудины отходит вперед. Благодаря движению ребер при вдохе сечение грудной клетки становится больше и в поперечном, и в продольном направлениях. Ребра представляют собой рычаги второго рода с точкой вращения в их сочленениях с позвоночником. Наружные межреберные мышцы при сокращении должны были бы сближать ребра, но так как момент силы у нижнего прикрепления мышц (g) больше, чем у верхнего (Ь) вследствие большой длины рычага (с—g), то при сокращении мышц ребра поднимаются.Во время вдоха диафрагма сокращается, в результате чего ее купол становится более плоским и опускается. В зависимости от возраста, пола, вида деятельности дыхание совершается преимущественно или за счет межреберных мышц — реберный, или грудной тип дыхания, или за счет диафрагмы — диа-фрагмальный, или брюшной тип дыхания. Есть и смешанный тип, при котором в дыхании участвуют нижние отделы грудной клетки и верхняя часть живота, он встречается у пожилых людей, а также при ригидности грудной клетки и снижении эластичности ле- гочной ткани (эмфизема легких, пневмосклероз и др.). Тип дыхания не является строго постоянным и может меняться в зависимости от исходного положения, телосложения, пола, вида деятельности и состояния пациента. Так, при переносе на спине тяжелого груза грудная клетка фиксируется мышцами туловища и межреберий неподвижно вместе с позвоночником; дыхание же совершается исключительно за счет движений диафрагмы. У беременных женщин смещение диафрагмы вниз затруднено и поэтому преобладает реберный тип дыхания. При усиленном дыхании, например, у спортсменов, в акте вдоха участвует ряд дополнительных, или вспомогательных дыхательных мышц. При вдохе объем грудной клетки и находящихся в ней легких увеличивается; при этом давление в них понижается и воздух через воздухоносные пути входит в легочные альвеолы.

Механизм выдоха Во время вдоха дыхательные мышцы человека преодолевают ряд сил: 1) тяжесть приподнимаемых кверху ребер; 2) эластическое сопротивление реберных хрящей; 3) сопротивление стенок живота и брюшных внутренностей, отдавливаемых книзу опускающимся куполом диафрагмы. Когда вдох окончен и дыхательные мышцы расслабляются, под влиянием указанных сил ребра опускаются и купол диафрагмы приподнимается. Объем грудной клетки вследствие этого уменьшается. Таким образом, акт выдоха (экспирация) происходит обычно пассивно, без участия мышц. При форсированном выдохе к перечисленным силам, уменьшающим объем грудной клетки, присоединяется сокращение внутренних меж- реберных мышц, задних нижних зубчатых мышц и мышц живота. При сокращении внутренних межреберных мышц, ребра опускаются. Мышцы живота при их сокращении оттесняют органы брюшной полости и купол диафрагмы кверху. При выдохе объем грудной клетки, а, следовательно, и легких, уменьшается, давление в альвеолах повышается и воздух выходит из легких наружу. У здорового человека дыхание в спокойном состоянии ритмичное, и число дыхательных движений составляет 14—18 в мин., а у
спортсменов — 8—12. Дыхание может быть учащенным и редким. Учащение дыхания наблюдается после физической нагрузки (в процессе тренировки), при нервном возбуждении и др.

Урежение дыхательных движений наблюдается при заболеваниях, которые угнетают функции дыхательного центра или при анатомических изменениях в бронхах (сужение, сдавливание и т. п.). У здорового человека дыхание ритмичное, глубокое. Но встречается и нарушение ритмичности дыхания, которое, как правило, является результатом нарушения координационной способности дыхательного центра, характеризующееся тем, что нарушается гармоническая, слаженная работа отдельных групп дыхательных мышц. В этой связи наступает более быстрая утомляемость дыхательной мускулатуры, что приводит к нарушению снабжения мышц кислородом и утомляемости пациента. Ритм дыхания может нарушаться при беге по пересеченной местности (кросс), у лыжников-гонщиков и в других видах спорта, а также при тестировании спортсменов с явлениями перетренированности (например, при выполнении пробы

«степ-тест», или «бег на месте»).

Механика дыхательных движений Перемещение воздуха в легкие и из них требует совершения работы. Для того, чтобы воздух вошел в легкие, должны быть преодолены силы трех типов, а именно: 1) эластическое сопротивление; 2) сопротивление воздушного потока в трахео-бронхиальном дереве и 3) сопротивление неэластичных тканей, например, ребер. Расширение легких обусловлено увеличением объема грудной кетки. Если давление снаружи становится выше атмосферного, из легких выходит лишь небольшое количество воздуха, так как мелкие воздухоносные пути спадаются, задерживая его в альвеолах. С возрастом, а также при некоторых легочных заболеваниях такое закрытие дыхательных путей происходит при большем объеме легких. Крутизна кривой «давление—объем», т. е. изменение объема на единицу изменения давления, называется растяжимостью. В физиологических условиях (если растягивающее давление составляет от —2 до —10 см вод. ст.) легкие обладают удивительной растяжимостью. У человека она достигает примерно 200 мл/см вод. ст., однако при более высоких давлениях уменьшается. Этому соответствует более пологий участок кривой «давление—объем». Растяжимость легких несколько снижается при повышенном давлении в легочных венах и переполнении легких кровью. При альвеолярном отеке она уменьшается в результате неспособности некоторых альвеол раздуваться. Заболевания, сопровождающиеся фиброзом легких, воспалительными процессами, также приводят к уменьшению их растяжимости. Это связано с изменениями эластических тканей.

В стенках альвеол, а также вокруг сосудов и бронхов проходят волокна эластина и коллагена. По определению, растяжимость легких равна изменению их объема на единицу изменения давления. Для ее оценки необходимо измерить внутриплевральное давление. При этом регистрируют давление в пищеводе: обследуемый заглатывает катетер с маленьким баллончиком на конце. Растяжимость легких можно измерить очень просто: обследуемого просят сделать максимально глубокий вдох, а затем выдыхать воздух в спирометр порциями, скажем, по 500 мл. При этом определяют давление в пищеводе. Затем строят график

«давление—объем», сходный с кривой. Этот метод позволяет получить наибольшую информацию об упругости легких. Растяжимость легких можно также измерить при спокойном дыхании. Этот способ основан на том, что в отсутствие потока воздуха (в конце вдоха и выдоха) внутриплевральное давление отражает только эластическую тягу легких и не зависит от сил, возникающих при движении воздушной струи. Таким образом, растяжимость будет равна отношению разности легочных объемов в конце вдоха и выдоха к разности внутриплевральных давлений в эти же моменты. На вентиляцию легких влияют: частичное перекрытие (закупорка) воздухоносных путей (мокрота, слизь и др.) и тогда заполнение воздухоносных путей (участков легких) будет происходить медленнее. С увеличением частоты дыхания объем воздуха, поступающего на такой участок, становится все меньше и меньше. Упругостью обладают не только легкие, но и грудная клетка. В норме грудная клетка стянута, а легкие растянуты и действующие в них упругие силы уравновешивают друг друга. В эксперименте показано, что при объеме, равном функциональной остаточной емкости (ФОБ), давление релаксации отрицательно. Это означает, что грудная клетка стремится расшириться. Лишь в том случае, когда'объем достигает примерно 75% жизненной емкости легких (ЖЕЛ), давление релаксации становится равным атмосферному, т. е. грудная клетка приходит в состояние равновесия. При любом объеме давление релаксации легких и грудной клетки равно сумме их давлений релаксации, измеренных по отдельности. Поскольку давление (при данном объеме) обратно пропорционально растяжимости, общую растяжимость легких и грудной клетки можно вычислить по формуле Еще один важнейший фактор, во многом обусловливающий особенности кривых «давление— объем» для легких, — это поверхностное натяжение жидкости, выстилающей стенки альвеол. По- верхностным натяжением называется сила (измеряемая обычно в динах), действующая в поперечном направлении на воображаемый отрезок длиной 1 см на поверхности жидкости. Известно, что клетки, выстилающие стенки альвеол, вырабатывают секрет, значительно снижающий поверхностное натяжение альвеолярной жидкости.

Влияние секрета (сурфактанта) на поверхностное натяжение, объясняется его низким поверхностным натяжением в альвеолах и отсюда увеличивается растяжимость легких и тем самым умень- шается совершаемая при вдохе работа; а также обеспечивается стабильность альвеол, их в легких около 300 млн, и все они имеют тенденцию к спадению (ателектазу), очаги которого часто образуются в легких при заболеваниях. При недостатке сурфактанта легкие становятся более «жесткими» (т. е. менее растяжимыми).
Известно, что нижние отделы легких вентилируются лучше, чем верхние. Это, по-видимому, связано с тем, что в области оснований легких внутриплевральное давление менее отрицательно, чем в области верхушек.

Сопротивление воздухоносных путей Воздух проходит через трубку, если между ее концами существует перепад давлений. От его величины зависят скорость и особенности воздушного потока. При низких скоростях линии течения могут быть параллельны стенкам трубки {А). Это так называемый ламинарный режим. По мере возрастания скорости потока он становится все менее однородным, особенно в местах ветвления трубки, где разделение воздушных струй может происходить с образованием местных завихрений (Б). Наконец, при очень высоких скоростях линии течения полностью теряют упоря-дочность, и поток называется в этом случае турбулентным (В). Уравнение, связывающее давление и расход (т. е. объемную скорость) при ламинарном потоке было впервые выведено французским врачом Пуазейлем. Для прямых трубок с круглым сечением оно записывается следующим образом:
где V — расход флюида, Р — давление, создающее поток (АР см. на рис. 17.20), г — радиус трубки, ц — вязкость флюида, / — длина трубки. Из уравнения видно, что давление пропорционально расходу (Я = KV). Поскольку сопротивления потоку R равно давлению, деленному на расход, можно записать: Как видно, большую роль играет радиус трубки; когда он умень- шается вдвое, сопротивление потоку увеличивается в 16 раз. Важно также, что на взаимоотношение между давлением и расходом влияет вязкость, а не плотность флюида. Одна из особенностей полностью развитого ламинарного потока заключается в том, что частицы газа в центре трубки передвигаются со скоростью, в два раза превышающей среднюю. Особенности турбулентного потока совершенно иные. Давление в этом случае пропорционально уже не расходу флюида, а примерно квадрату расхода (Р = KV2). Вязкость при таком режиме не играет существенной роли, а увеличение плотности флюида при данном расходе повышает перепад давлений. Будет поток ламинарным или турбулентным, в значительной степени зависит от так называемого числа Рейнольдса (Re), получаемого по уравнению:
1   ...   7   8   9   10   11   12   13   14   ...   30


написать администратору сайта