Главная страница

Биомеханика конспект лекций донской. Лекция. Биомеханика двигательных действий как систем целенаправленных движений


Скачать 0.93 Mb.
НазваниеЛекция. Биомеханика двигательных действий как систем целенаправленных движений
Дата08.09.2018
Размер0.93 Mb.
Формат файлаdocx
Имя файлаБиомеханика конспект лекций донской.docx
ТипЛитература
#50045
страница13 из 30
1   ...   9   10   11   12   13   14   15   16   ...   30


3. Напряжение (7) прямо пропорционально радиусу (г) (7 = Р- г): чем больше радиус, тем больше напряжение, и наоборот. В соответствии с законом Лапласа мелкие сосуды, а также сосуды сердца небольших размеров способны выдержать большее давле- ние, чем более крупные сосуды и вероятность их разрыва меньше.В законе Лапласа речь идет о пассивном напряжении, т. е. напряжении, зависящем от структурных особенностей самого сосуда, таких, как количество эластических и коллагеновых волокон. Активное напряжение связано с сокращением гладких мышц сосуда, приводящим к его сужению и уменьшению кровотока в нем. Если нервы, оканчивающиеся на этих мышцах, раздражать с возрастающей частотой, давление в сосудах будет увеличиваться, а кровоток падать (рис.). Трансмуральное давление равно разнице между давлением, действующим на сосуд извне, а именно со стороны окружающих тканей и тканевой жидкости, и изнутри (кровяным давлением). Так, при сокращении мышцы кровоток в ее сосудах может временно прекратиться в связи с тем, что действующая извне сдавливающая сосуд сила будет больше давления внутри сосуда. Например, при судорогах мышц у спортсмена во время выполнения интенсивных упражнений. В этой связи исключаются упражнения с натуживанием, задержкой дыхания, поднятие тяжестей, прыжковые упражнения для людей пожилого и старческого возраста, а также упражнения на тренажерах, подводное плавание, прыжки в воду из-за возможности возникновения спазма мышц.
Биомеханика пищеварительной системы Пищеварительный аппарат своим назначением имеет принятие пищи извне, механическую и химическую ее обработку и выведение во внешнюю среду неиспользованных пищевых остатков. Конечным результатом этого процесса является перевод пищевых веществ в растворимое состояние и всасывание их в кровь, посредством которой они доставляются живым тканям. Пищеварительный аппарат можно рассматривать как своего рода трубку (общей длиной 10—14 м),
начинающуюся краниаль-но — ротовой щелью и заканчивающуюся каудально — задним проходом. У человека различают: полость рта, глотку, пищевод, желудок, тонкую и толстую кишку. Последние четыре отдела входят в понятие пищевого канала. Стенки пищевого канала на всем протяжении состоят из трех оболочек: слизистой, обращенной в просвет канала; серозной, покрывающей органы снаружи; и мышечной. Мускулатура пищеварительного аппарата служит передвижению принятой пищи в кранио-каудальном направлении, обеспечивает перемешивание ее для возможно большего контакта с пищеварительными соками и регулирует переход пищевых масс из одного отдела в другой. Основными функциями пищеварительного аппарата являются секреторная, моторная и всасывательная. Секреторная функция заключается в выработке железистыми клетками пищеварительных соков: слюны, желудочного, поджелудочного и кишечного соков и желчи. Моторная, или двигательная, функция осуществляется мускулатурой пищеварительного аппарата и обеспечивает жевание, глотание и передвижение пищи вдоль пищеварительного тракта, а также выбрасывание непереваренных остатков. Всасывание осуществляется слизистой оболочкой желудка, тонких и толстых кишок. Сокращение гладких мышечных волокон стенки желудка обеспечивает моторную, иначе говоря, двигательную функцию желудка. Значение ее состоит в перемешивании содержимого желудка и передвижении пищи из желудка в кишку. Перистальтика осуществляется непрерывно с определенным ритмом и скоростью. Так, перистальтика желудка составляет 3 м (3 волны в минуту), а кишечника — 6 м/с, но изменяется при некоторых заболеваниях. Перистальтика обеспечивает перемешивание, растирание и продвижение химуса. Она обусловлена последовательно смещающимися сокращениями и расслаблениями гладкомышечной мускулатуры (циркуляторной и продольной). При физиологическом исследовании кишечника можно выявить две формы бегущих волн деформации: стоячие волны, наблюдаемые в эксперименте на изолированной кишке (или ее сегменте), и волны, распространяющиеся в продольном направлении, которые вызывают изменения внутриполостного давления и объема кишки. Наряду с секреторной, органы пищеварительного тракта осуществляют также экскретную функцию, состоящую в выделении из организма некоторых продуктов обмена (например, желчных пигментов) и солей тяжелых металлов. Все функции органов пищеварения подчинены сложным нервным и гуморальным механизмам регуляции. Схема расположения внутренних органов представлена на рис. 17.35, а, а на рис. 17.35, б представлено моделирование механических связей. Продвижение и переваривание пищи в желудочно-кишечном тракте происходит в результате перистальтики желудка и кишок. Перистальтические движения наступают в результате сокращения мускулатуры, происходит как бы волнообразное движение. Эва-куаторная функция желудка связана с перистальтическими сокращениями мускулатуры и поступлением пищи в двенадцатиперстную кишку. При нарушении перистальтики возникает метеоризм, колиты и другие нарушения; замедление эвакуации желудочного содержимого наблюдается при хронических гастритах. В норме пустой желудок находится в спавшемся состоянии, а при поступлении пищи — начинается перистальтическая функция. Перистальтика желудка обусловлена тонусом желудочной мускулатуры. О перистальтике желудка, т. е. о состоянии тонуса мускулатуры, можно судить по данным рентгенологического исследования, по электрогастрографии или по радиотелеметрии и др. Желудочно-кишечный тракт, как полый орган с гладкой мускулатурой, функционирует в результате сокращения кишечной мускулатуры. Главные функции кишечника — секреторная, двигательная и вса- сывательная — осуществляются неодинаково в разных отделах. Секреторная, или пищеварительная, функция в основном осуществляется в верхнем отделе тонкого кишечника. Главную роль в выполнении этой функции играют выделяющиеся здесь ферменты поджелудочной железы, желчь и др. Некоторую роль в кишечном пищеварении играют ферменты, выделяемые бактериями, населяющими кишечник. Тонкокишечное пищеварение касается всех групп пищевых веществ — жиров, белков, углеводов, нуклеиновых кислот. Двигательная функция кишечника. В тонких кишках наблюдается два вида движений: перемешивающие, способствующие смешиванию кишечного содержимого с пищеварительными соками, и перистальтические, при которых происходит сокращение как круговой, так и продольной мускулатуры кишок. Сокращения
круговой мускулатуры совершаются таким образом, что выше пищевого комка она сокращается, а ниже него расслабляется. Это способствует продвижению пищевой массы вперед. Сокращение продольных мышечных волокон вызывает укорочение соответствующего участка кишки и как бы надвигание его на пищевую массу, благодаря чему последняя опять-таки оказывается в более дисталь-ном, т. е. расположенном ближе к толстой кишке участке. В верхней части тонкой кишки продвижение пищевых масс происходит быстро, в нижней — замедляется. Все движения в тонких кишках происходят под влиянием импульсов, возникающих в ауэр-баховском и мейснеровском сплетениях. Двигательная функция толстой кишки сводится в основном к проталкиванию каловых масс по направлению к заднему проходу. В толстом кишечнике происходит три вида движений: малые и большие маятникообразные движения, при которых происходят перемешивание содержимого и уплотнение его благодаря всасыванию жидких частей, перистальтические движения, способствующие продвижению каловых масс по направлению к прямой кишке. Все движения в толстых кишках происходят медленнее и реже, чем в тонких. Поступление каловых масс в прямую кишку влечет за собой дефекацию. Дефекация является рефлекторным актом, вызываемым раздражением каловыми массами нервных окончаний в слизистой оболочке прямой кишки. Это раздражение проводится к центру, расположенному в поясничной части спинного мозга. При этом воз-
никают непроизвольные сокращения прямой кишки при одновременном открытии ее сфинктера. К ним присоединяется натужива-ние, заключающееся в произвольном сокращении мышц брюшного пресса. Эти сокращения повышают внутрибрюшное давление и тем самым способствуют лучшему извержению кала. Рефлекс дефекации может быть временно подавлен волевым усилием под влиянием импульса из коры головного мозга. Расстройства секреторной функции кишечника могут выразиться в уменьшении или в увеличении выделения кишечного сока. Расстройства двигательной функции кишечника выражаются в ускорении или замедлении продвижения содержимого по кишечному тракту. Вследствие ускоренного продвижения кишечного содержимого жидкие части его не успевают всосаться. В результате этого наступает диарея. При медленном продвижении и длительном пребывании в кишечнике каловые массы сильно уплотняются, в результате чего наступает запор. Расстройство всасывательной функции кишечника выражается в недостаточном всасывании пищевых веществ в кишках. Эти расстройства зависят либо от слишком быстрого прохождения содержимого по кишечнику вследствие усиления перистальтики, либо от патологических изменений в кишечной стенке, или нарушения кровообращения в ней вследствие сердечной недостаточности, или застоя в системе воротной вены, либо, наконец, от недостаточности переваривания пищи в кишечнике, что препятствует переходу ее во всасываемую форму.

Биомеханика опорно-двигательного аппарата (ОДА) Опорно-двигательный аппарат подразделяют на пассивный (скелет и его соединения) и активный (мышцы) компоненты. Под скелетом вообще понимают комплекс более или менее плотных образований, имеющих в жизни организма преимущественно механическое значение. Вокруг частей скелета человека группируются мягкие ткани и органы; этим объясняется соответствие между формой скелета и формой всего тела. Скелет человека выполняет локомоторную функцию. Пассивная часть аппарата движения включает в себя кости и их соединения. Механические функции скелета способны обеспечивать опору, защиту и движение. Опорная функция заключается в прикрепления к скелету мышц, связок и сухожилий. Под защитой понимают ограждения внутренних органов от механических повреждений. Движение осуществляется благодаря наличию костных рычагов, приводимых в действие мышцами. Скелет взрослого человека состоит более чем из 200 отдельных костей, преобладающая часть их— парные. Скелет человека (рис. 17.36) подразделяют на основные части: череп, позвоночник, грудную клетку, верхние (включая плечевой пояс) и нижние (включая тазовый пояс) конечности. Череп состоит из неподвижно сочлененных костей (исключение составляет височно- нижнечелюстной сустав). Череп служит опорой и защитой многим важнейшим органам. Череп образует полость, которая представляет как бы конечное расширение позвоночного канала и заключает в себе головной мозг с его оболочками и сосудами. Позвоночный столб составляется из всех истинных позвонков, крестца, копчика и межпозвоночных хрящей со связочным и суставным аппаратом (рис.).Движения между отдельными позвонками малы, но, суммируясь, они сообщают позвоночному столбу значительные переме- щения. Причем позвоночный столб может совершать движения вокруг всех осей: фронтальной, сагиттальной, вертикальной. Возможны следующие движения позвоночного столба: 1) вокруг фронтальной оси — сгибание и разгибание (первое — гораздо значительнее), наиболее свободные из всех движений позвоночника; 2) вокруг сагиттальной оси — сгибание в сторону (иначе — отведение позвоночника от срединной плоскости); вокруг вертикальной оси — повороты (скручивание); 4) пружинное движение, при котором измеряют величину кривизны позвоночника (например, при прыжках). Большей подвижностью отличаются верхний поясничный и шейный отделы. Межпозвоночные хрящи уменьшают толчки и сотрясения, образуют соединения прочные, но вместе с тем достаточно эластичные, допускающие движения во все стороны. Величина движений значительнее в том отделе позвоночника, где хрящи толще. Каждому грудному позвонку соответствует пара ребер, из них 7 верхних соединяются своими передними концами с грудной костью. Позвоночник подразделяют на пять отделов: шейный (С, — С7), грудной (Г, — Г12), поясничный (L, — L5), крестцовый (S, — S5), копчиковый (4—5). Длина позвоночника мужчины равняется в среднем 73 см, причем на шейный отдел приходится 13 см, на грудной — 30 см, на поясничный — 18 см и на крестцово-копчико-вый — 12 см. Позвоночник женщины имеет длину в среднем 69 см. В старческом возрасте наблюдается укорочение позвоночника на 5—7 см. В общем длина позвоночного столба составляет около 2/3 всей длины тела. Функциональное значение позвоночника чрезвычайно велико: он поддерживает голову, служит гибкой осью туловища, принимает участие в образовании стенок грудной и брюшной полостей и таза. В позвоночном канале помещается спинной мозг, его оболочки и сосуды. Опорно- двигательная функция позвоночника во многом определяется структурными и механическими свойствами межпозвоночных дисков, соединяющих тела соседних позвонков, а также связок, соединяющих тела, дуги и отростки позвонков. Между отдельными позвонками имеются соединения, которые связывают: 1) их тела;

2) дуги и 3) отростки. Поверхности тел двух смежных позвонков, обращенные друг к другу, соединяются межпозвоночными хрящами, который отсутствует только между I и II шейным позвонками. Число этих хрящей в позвоночнике взрослого равняется 23, толщина хряща от 2 мм (в средней грудной области) до 10 мм у нижних поясничных позвонков. Кроме того, толщина неодинакова и в различных пунктах одного и того же хрящевого диска. Общая высота всех хрящей составляет приблизительно четверть длины всего позвоночного столба (не считая крестцовой кости и копчика). Межпозвоночные хрящи прочно соединяют тела позвонков между собой, вместе с тем они допускают известную подвижность и играют роль эластических подушек. Межпозвоночные хрящи выдерживают вес вышерасположенных отделов тела, а также демпфируют в силу своего строения ударные нагрузки, возникающие при ходьбе и беге, при
постановке ноги на землю, при приземлении и др. На среднем распиле позвоночника видно, что размеры тел позвонков увеличиваются в направлении сверху вниз; и можно выделить кривизны позвоночника в передне-заднем направлении — физиологический лордоз — изгиб, обращенный выпуклостью кпереди; физиологический кифоз — изгиб выпуклости кзади и незначительное искривление позвоночника вбок — физиологический сколиоз. Различают: лордозы — шейный и поясничный, кифоз — грудной и крестцовый. Кривизны позвоночника возникают у человека в связи с вертикальным положением его тела. Кости соединяются между собой с помощью: 1) непрерывных соединений (при помощи соединительной ткани (синдесмозы) и посредством хряща (синхондрозы); 2) полусуставов (где соединение осуществляется посредством хряща); 3) прерывных соединений (суставов, обеспечивающих высокую подвижность всего тела). Суставы различаются по форме суставных поверхностей и степени подвижности сочленяющихся костей.
Сустав называется простым, если в его образовании участвуют две кости, и сложным, если его образуют три кости и более. Сустав включает основные структурные элементы (хрящи, капсулу, суставную полость) и вспомогательные образования (синовиальные складки, внутрисуставные связки, внутрисуставные хрящи, суставные губы, сесамовидные кости). К простым суставам относятся блоковидный сустав. К суставам со сложной кинематикой движения относят коленный сустав. Наличие синовиальной жидкости в суставе, ее физико-механические свойства и свойства хряща обеспечивают функциональную конгруэнтность суставных поверхностей при локомоциях (движениях). Питание внутрисуставного хряща происходит за счет интер-стициальной и синовиальной жидкостей. Синовиальная жидкость обладает важными свойствами для функционирования сустава (суставов), например, высокой упругостью. Удельный вес синовии равен 1,07-104 Н/м3, а относительная вязкость (по отношению к вязкости воды, которая составляет 1,002) колеблется от 5,7 до 1160. От наличия синовиальной жидкости в суставе и ее свойств зависит функция сустава. С точки зрения кинематики, соединения (суставы) между от- дельными звеньями (костями) представляют собой кинематические пары, идеализированные схемы которых представлены в таблице. Подвижность кинематических цепей обеспечивается работой мышц. Равнодействующая мышечных сил действует на кости, вращающиеся вокруг осей суставов. Движение в суставах обеспечивается парой функциональных рабочих групп мышц: одноостные суставы обслуживает одна пара (две функциональные группы мышц); двухостные — две пары (четыре группы мышц); трехостные — три пары (шесть групп мышц). Локомоторные движения осуществляет нервно-мышечный аппарат (НМА). Для анализа движений и исследования их динамики необходимо знать размеры тела человека и отдельных его частей. Они измеряются в зависимости от пола, возраста, вида деятельности и др. В анатомо-физиологической практике принята классификация движений в суставах, связанных с осями плоскостей. Различают движения: 1) вокруг фронтальной оси (сгибание, разгибание); 2) вокруг сагиттальной оси (отведение, приведение); 3) вокруг продольной оси (вращение внутрь и вперед, вращение наружу). Круговое движение совершается при переходе движения с одной оси на другую. При анализе движений в суставе, необходимо учитывать ограничения на эти движения.

Грудная клетка Грудную клетку образуют 12 грудных позвонков, 12 пар ребер с их хрящами, грудная кость и сложный связочный аппарат. Форму грудной клетки сравнивают с усеченным конусом, основание которого обращено книзу. Через верхнее отверстие грудной полости проходят: дыхательное горло, пищевод, кровеносные сосуды и нервы. Нижнее отверстие закрыто грудобрюшной преградой — диафрагмой — тонкой мускульно-сухожильной пластинкой, отделяющей грудную полость от брюшной. Полость грудной клетки содержит сердце и легкие с их серозными оболочками. форма и особенно размеры грудной клетки подвержены значительным индивидуальным колебаниям, крайние степени которых граничат с патологическими состояниями. С пятнадцатилетнего возраста начинают обрисовываться поло- вые различия. У мужчины все размеры грудной клетки значительнее и она имеет более близкое сходство с конусом, у женщин разница в диаметре верхней и нижней частей не так велика, грудная клетка короче и закругленнее. Упругость грудной клетки в пожилом возрасте уменьшается (реберные хрящи омелевают, подвижность ослабевает, грудная клетка становится более длинной и плоской).

Скелет конечностей человека Скелет каждой конечности разделяется на пояс и свободный отдел (см. рис. 2.14). Пояс расположен в пределах туловища, является для конечностей опорой и соединяет их свободный отдел со скелетом туловища. Пояс верхней конечности состоит из двух отдельных парных костей — ключицы и лопатки. Свободный отдел состоит из трех частей: проксимальный (плечо), средний (предплечье) и дистальный (кисть). Пояс нижней конечности образован с каждой стороны одной тазовой костью. Тазовая кость сочленяется с крестцом и с ближайшей костью свободного отдела конечности (бедренной костью). Свободный отдел состоит из трех частей: проксимальной (бедро), средней (голень) и дистальной (стопа). Кости человеческого тела соединяются между собой посредством плотной волокнистой соединительной ткани, эластической ткани и хряща. Все соединения костей можно разделить на две группы: в первой связующая ткань представляет сплошную прослойку между костями; это непрерывные соединения

— синартрозы, большей частью малоподвижные или неподвижные. Подвижность их определяется растяжимостью той ткани, которая соединяет кости. Вторую группу составляют прерывные соединения более или менее подвижные, иначе сочленения, или суставы; здесь в ткани, соединяющей кости, имеется
полость, непрерывность связи между костями нарушается. Некоторые кости, например, позвонки, связаны между собой различными видами соединений, среди которых имеются суставы, синхондрозы, синдесмозы.

Следует отметить, что суставы верхней конечности отличаются большей свободой и разнообразием движений, суставы нижней конечности также весьма подвижны при меньших степенях свободы в некоторых из них (например, в тазобедренном по сравнению с плечевым, или в голеностопном по сравнению с лучезапястным и т. д.). Нижние конечности человека служат исключительно для опоры и передвижения тела, а верхние, свободные от этой работы, развились в орган трудовой деятельности. Кроме скелета, система органов движения включает мускулатуру. Мышца соединяется с костью сухожилием посредством врастания коллагеновых волокон в надкостницу или надхрящницу, либо непосредственно в кость или хрящ. Сухожилия обеспечивают крепление мышц к костям, а также передачу мышечных усилий. Прочность сухожилия при растяжении достигает от 44 до 67 МПа, хотя для дельтовидного сухожилия было получено значение разрушающего напряжения порядка 0,6 МПа. Поперечнополосатые мышцы теснейшим образом (анатомически и физиологически) связаны со скелетом, образуя вместе с ним систему органов опоры и движения. Общее число скелетных мышц в теле человека — более 600. Масса их составляет у женщин до 28—35% от массы тела, у мужчин — до 40—45%, у спортсменов — 55—65%. Приблизительно 50% общей массы скелетных мышц приходится на нижние конечности, 30% — на верхние конечности и 20% — на мышцы головы и туловища. Скелетные мускулы, которые начинаются от костей (иногда от фасций и их производных), к костям и прикрепляются. Важным в механике является вспомогательный аппарат мышц, включающий фасции, синовиальные сумки, влагалища сухожилий, блоки мышц, сесамовидные кости. Фасции — фиброзные оболочки, покрывающие мышцы и отдельные группы мышц. Фасции выполняют опорную функцию, крепятся к кости образуя фасциальные футляры. Синовиальные сумки — тонкостенные изолированные мешочки, не связанные с полостью сустава и содержащие синовиальную жидкость. Влагалища сухожилий — защитные приспособления сухожилий мышц в местах их наиболее тесного прилегания к кости (в области кисти и стопы). Они уменьшают трение, облегчая работу мышц. Обычно мышцы действуют на кости, соединенные между суставами, так что получается тот или иной род рычага. Особенно ясно выражено это на конечностях: здесь длинные кости образуют систему легких и прочных рычагов, и в то же время представляют обширную поверхность, где прикрепляется высокодифференцирован-ная мускулатура. Примером рычага первого рода может служить работа мышц при удержании головы или тела в тазобедренном суставе. При удержании груза в руке, согнутой в локтевом суставе, образуется рычаг второго рода .

В механике подвижное соединение двух звеньев, находящихся в непосредственном соприкосновении, называют кинематической парой. Кинематические пары могут быть вращательными и поступательными. В зависимости от числа ограничений, накладываемых на движение, звенья могут совершать от одного до пяти движений. В человеческом организме число независимых движений костей в суставах может составлять от одного до трех. На рис. 17.42 показана кинематическая схема ОДА человека, на которой кости представлены в виде звеньев кинематической цепи, а суставы — кинематических пар. При исследовании движений человека широко применяют кинематические модели на основе уравнений движения системы твердых тел, которые соответствуют отдельным сегментам тела по геометрическим и масс-инерционным характеристикам; элементы модели соединяются вращательными шарнирами, диапазоны поворотов которых соответствуют амплитудам угловых движений суставов; механические связи модели с окружающей средой часто заменяют действием сил реакции, что позволяет сохранять структуру модели при различных движениях. Важной особенностью таких биомеханических моделей является их ветвящаяся структура типа «дерево». Отсчет координат может начинаться от различных элементов в зависимости от того, какие из них находятся в контакте с опорой. В зависимости от целей исследования можно условно разделить модели такого типа на две группы: кинематические и динамические (И.Ф. Образцов и др., 1983). Кинематическими называют модели, предназначенные для описания движений тела человека и дающие зависимости угловых и линейных перемещений (скоростей, ускорений) отдельных его точек в функции времени. Динамические модели позволяют оценивать распределение сил, напряжений и деформаций в различных сегментах, структурах и тканях тела человека, в частности, для модельной оценки переносимости различных динамических воздействий.

Кинематика опорно-двигательного аппарата (ОДА) Рассмотрим кинематику руки человека. С точки зрения биомеханики, верхняя конечность может быть смоделирована многозвенным пространстввенным механизмом. Эта

система имеет семь степеней свободы. Плечевой сустав является шаровидным, т. е. имеет три степени свободы. На рис. 17.43, г он представлен эквивалентной схемой одноосных шарниров, оси вра- щения которых пересекаются в одной точке, а звенья 1, 2 имеют нулевую длину. Значит, положение седьмой системы координат в абсолютной, нулевой системе координат определяет формула: где — fe — радиус-вектор точки С в абсолютной системе координатных осей; г7 — радиус-вектор точки С в седьмой системе координат. Анализируя угловые перемещения, скорости и ускорения звеньев руки при исполнении различных целенаправленных движений типа «возьми—поставь» можно оценивать качественно и количественно процесс реабилитации пациента или использование протеза. Естественно, что при построении кинематической схемы и анализа движений нужно учитывать антропометрические данные
(табл. 17.8) и ограничения, налагаемые на движения в суставах (табл. 17.9). На рис. 17.44 приведена схема двухзвенного механизма, которым моделируется движение нижней конечности в фазе опоры. Такая схема позволяет определить перемещение мгновенного центра вращения бедра. Считается, что плоское движение нижней б — скелет руки: 1 — ключица, 2 — клювовидный отросток лопатки, 3 — плечевая кость, 4 — лучевая кость, 5 — локтевая кость, 6 — трапециевидная кость, 7 — проксимальная фаланга большого пальца, 8 — кости запястья, 9 — пястные кости, 10 — фаланги пальцев, д — система координат звеньев; а

— кинематическая схема: 1 — «плечевой» пояс, 2 — плечевая сферическая кинематическая пара, 3 — плечо, 4 — локтевая цилиндрическая пара, 5 — предплечье, 6— кистевая сферическая пара, 7 — кисть, в — мышцы верхней конечности: 1 — трапециевидная, 2 — дельтовидная, 3 — трехглавая мышца плеча, 4 — клювоплечевая, 5 — двуглавая мышца плеча, 6 — плечевая, 7 — плечелучевая, 8 — длинный лучевой разгибатель запястья, 9 — короткий лучевой разгибатель запястья, 10 — разгибатель пальцев, ' 1 — длинная отводящая мышца большого пальца, 12 — короткий разгибатель большого пальца, 13 — длинный разгибатель большого пальца, 14 — межкостная мышца, 15 — передняя зубчатая мышца, 16 — наружная косая мышца живота, 17 — круглый пронатор, 18 — лучевой сгибатель запястья, 19 — длинная ладонная мышца, г — динамическая модель: 7 — туловище, 2 — плечевой шарнир, 3 — плечо, 4 — локтевой шарнир, 5 — предплечье, 6 — шарнир кисти, 7— кисть. Стрелки — компоненты мышечных моментов в суставах

конечности происходит в сагиттальной плоскости вокруг оси голеностопного сустава, остающейся неподвижной. За обобщенные координаты принимаются углы ф,(/) и <р2(0. На рис. 17.44 показаны абсолютная и локальные оси координат. Положение точки С в абсолютной системе координатных осей находят по формуле: Здесь г2 = (0,0, 0, 1 )т; В2 = Л Д, где Л. — матрица положения. Обобщенные координаты задают как функцию времени по результатам экспериментальных наблюдений. Решение обратной задачи кинематики представляют интерес для медицины и спорта. Формальная постановка обратной задачи кинематики требует решения уравнения:

По заданной матрице В. необходимо найти обобщенные координаты g.. Матричное уравнение (17.1) эквивалентно шести скалярным уравнениям. При этом важно число степеней свободы механизма со, который модулирует органы человека.

Если со > 6, то число неизвестных обобщенных координат превышает число уравнений и множество решений оказывается бесконечным.

Если со < 6, то число неизвестных меньше числа уравнений. Задача будет иметь решение лишь при некоторых специальных положениях механизма.

Если со = 6, то, приравняв наддиагональные элементы матриц 4-4, стоящих слева и справа в уравнении (17.1), можно получить систему из шести трансцендентных уравнений относительно обоб- щенных координат g Если это решение дает законы изменения обобщенных координат во времени g.(t), то, дифференцируя g.(t), можно найти обобщенные скорости g.(t) и обобщенные ускорения g.(t). Однако при этом погрешности расчета велики из-за необходимости использования методов численного дифференцирования.

Антропометрические и масс-инерционные характеристики тела человека. Динамика опорно- двигательного аппарата (ОДА) Тело человека представляет собой сложную биомеханическую систему, которая в повседневной жизни может испытывать значительные ускорения, а в спорте высших достижений особенно. При этом возникают усилия, приводящие к нарушению координации движений, травмам и прочим изменениям в тканях ОДА. Исследования движений человека (спортсмена) аналитическими методами механики проводятся с помощью моделей различной сложности, заменяющих ОДА и воспроизводящих действительную картину движений со степенью точности, достаточной для поставленных в процессе исследований задач. Все сочленения звеньев тела можно моделировать геометрически идеальными вращательными шарнирами. Чтобы воспроизвести движения тела человека, в моделях из мак- симально возможных шести измеряемых движений для каждого твердого звена, когда оно не присоединено к соседним звеньям (трех поступательных и трех вращательных относительно трех координатных осей, фиксированных на соседнем звене), при наложении кинематических связей исключаются все поступательные и остаются лишь вращательные движения, причем нередко допускаются только некоторые вращательные движения из трех возможных. Все оставшиеся вращательные движения составляют степени свободы звеньев. Формула для определения числа степеней свободы ОДА в целом:



где и — число степеней свободы; N — число подвижных звеньев в модели тела; / — число ограничений степеней свободы в соединениях-суставах; Р. — число соединений с ( ограничениями. При этом ЕР. = N — /. Общее число степеней свободы тела человека составляет около 6 • 144 — 5 • 81 — 4 • 33

— 3 • 29 = 240 (A. Morecki et al., 1969), но с полной достоверностью точное число неизвестно в связи с при- ближенным характером модели.

По кинематической схеме модели (см. рис. 17.43), подобно упрощенному скелету руки (см. рис. 17.43, г), легко подсчитать, что в этом примере подвижность руки относительно плечевого пояса
оценивается 7-ю степенями свободы. Положение о преодолении избыточных степеней свободы при работе наглядно изображается на кинематической схеме (см. рис. 17.43, а), если момент мышечных сил в каждом суставе разложить на его составляющие по степени свободы (см. 17.43, г). Очевидно, что число этих компонент момента будет равно числу степеней свободы.

Различают две задачи динамики. При решении первой задачи считается, что известны законы движения всех звеньев (обобщенные координаты) и определяются суставные моменты и динамические нагрузки в суставах. Этот расчет позволяет оценить прочность, жесткость и надежность исследуемой системы. Вторая задача динамики заключается в определении динамических ошибок — отклонений законов движения от заданных. Известными считаются внешние силы и находятся законы движения.

При решении задач динамики необходимо выбрать и обосновать динамическую расчетную схему. Важную роль при их построении играет моделирование воздействий внешних факторов, в том числе трения, материала и др. Затем строят математическую модель, соответствующую динамической расчетной схеме.

При построении динамических расчетных схем тела человека актуальным является определение масс-инерционных характеристик (МИХ) сегментов тела: масс, моментов инерции, координат центров масс отдельных сегментов (частей) тела. Границы сегментов набирают таким образом, чтобы внутри сегмента отсутствовала деформация или непроизвольное изменение геометрии масс сегмента. Обычно выделяют следующие сегменты: стопу, голень, бедро, кисть, предплечье, плечо, голову, верхний, средний и нижней отделы туловища. На рис. 17.45 указаны значения моментов инерции основных сегментов (оси обозначены в соответствии с рис. 2.1); на рис. 17.45 — антропометрические точки, определяющие границы сегментов и координаты центров масс сегментов на их продольных осях, в табл. 17.12 — относительные массы сегментов (за 100% принята масса тела). Оценку масс-инерционных параметров выполняют как прямыми методами (погружение в воду, внезапное освобождение, сечение трупов, компьютерная томография и др.), так и с использованием методов математического и физического моделирования. В последние годы наиболее удобным методом является метод геометрического моделирования. Метод прост, для его выполнения необходимы антропометрические измерения (10 обхватов и 10 длин). Минимум ошибок прогнозируется для МИХ отдельных сегментов за счет введения индивидуальных коэффициентов квазиплотности. Кроме этих методов, используют метод определения МИХ по уравнению регрессии, с использованием массы (Xt) и длины тела (X,): Y = В0 + ВХХХ + BJCr Параметры регрессии представлены в табл. 17.11.

Антропометрические характеристики определяют геометрические размеры тела человека и отдельных его сегментов: это величины, случайным образом измеряющиеся в зависимости от возраста, пола, национальности, рода занятий и т. д.

Основные статические, т. е. измерения при фиксированной позе, размеры тела приведены на рис.

17.46, а, и в табл. 17.8.

Динамические антропометрические характеристики используют для оценки объема рабочих движений, зон досягаемости и в других биомеханических и эргономических задачах, в частности при создании антропометрических манекенов. Некоторые динамические параметры приведены в табл. 17.11; 17.12; 17.13 и на рис. 17.46,6.

Антропометрическая и инерционная норма Антропометрическая норма определяет связи между линейными размерами любого сегмента тела человека и его ростом. Для этой цели введена величина, называемая парсом (П), равная 1/56 роста человека. В парсах выражены длины поперечника всех сегментов тела.

На рис. 17.47 показаны основные антропометрические характеристики. Ими пользуются, например, для определения длин сегментов после двусторонней ампутации конечностей.

На рис. 17.48 буквами обозначены центры суставов, а цифрами — центры масс соответствующих сегментов тела человека (табл. 17.12).

При ампутации происходит потеря массы тела, а при параличе — изменение положения центра масс тела. Чем выше уровень ампутации, тем более выражены изменения. Это важно для расчета схем построения протезов и аппаратов для инвалидов.

Биомеханика глаза.Орган зрения человека состоит из глазного яблока, зрительного нерва и вспомогательных аппаратов (мышцы, глазницы, фасции, веки с ресницами, слезный аппарат, сосуды и нервы). Все это располагается в глазнице (рис. 17.49). То, что воспринимается зрением, есть результат взаимодействия сенсорных и двигательных механизмов глаза и ЦНС, поскольку как произвольные, так и непроизвольные движения глаз, головы и тела заставляют изображение окружающего мира на сетчатке смещаться каждые'200—600 мс. Наш мозг создает целостную и непрерывную картину окружающего из последовательности дискретных изображений на сетчатке, которые слегка различны в левом и правом глазах (по законам геометрической оптики) и измеряются от одного момента фиксации взгляда к другому. Несмотря на смещение этих изображений, мы видим неподвижные предметы именно неподвижными, расположенными под одними и теми же углами к нам, т. е. в устойчивой системе координат. Оптическая система глаза представляет собой неточно центрированную сложную систему линз, формирующую на сетчатке перевернутое и уменьшенное изображение внешнего мира. Диоптрический аппарат состоит из прозрачной роговицы, передней и задней камер, заполненных водянистой жидкостью, радужной оболочки, окружающей зрачок, хрусталика, окруженного прозрачной сумкой и стекловидного тела, занимающего
большую часть глазного яблока (см. рис. 17.49). Стекловидное тело — это прозрачный гель, состоящий из внеклеточной жидкости с коллагеном и гиалуроновой кислотой в коллоидном растворе. В задней части глаза его внутренняя поверхность выстлана сетчаткой. Промежуток между сетчаткой и плотной склерой, окружающей глазное яблоко, заполнен сетью кровеносных сосудов — сосудистой оболочкой.

Глазное яблоко. В нем выделяют передний и задний полюсы. Передний полюс — это наиболее выступающая точка роговицы, задний расположен латерально от места выхода зрительного нерва. Глазное яблоко состоит из ядра, покрытого тремя оболочками: фиброзной, сосудистой и внутренней, или сетчаткой (см. рис. 17.49). Масса глазного яблока составляет в среднем 2,2 г, его объем 3,25 см3, продольный диаметр 17,3 мм, поперечный— 16,7 мм. До двухлетнего возраста глазное яблоко увеличивается на 40% по сравнению с первоначальной величиной у новорожденного, в 5 лет — на 70%, у взрослого — в 3 раза. Снаружи глазное яблоко покрыто фиброзной оболочкой, которая подразделяется на задний отдел — склеру и прозрачный передний — роговицу. Склера — плотная соединительно-тканная оболочка толщиной 03—0,4 мм в задней части, 0,6 мм вблизи роговицы. Сзади на склере находится решетчатая пластинка, участок, через который проходят волокна зрительного нерва. Роговица — прозрачная выпуклая пластинка блюдцеобразной формы. Толщина роговицы в центре около 1 —1,1 мм, по периферии 0,8—0,9 мм. Роговица состоит из пяти слоев: передний эпителий, затем передняя пограничная пластинка, собственное вещество (роговицы), задняя пограничная пластинка, задний эпителий (эндотелий роговицы). Диапазон напряжений в роговице при внутриглазном давления 2,72-103 Па находится в пределах 1 —1,2-105 Па, в склере — 1,6— 1,7-Ю5 Па. Соответственно этим значениям напряжений модуль нормальной упругости для радиального направления роговицы будет равен 3,8—4,5106 Па, для окружного направления — 2,8— 3,4-106 Па, для склеры — 5,1— 5,4-106 Па. Определение в процессе исследования значения коэффициента Пуассона при внутриглазном давлении 2,72 кПа составило для склеры 0,33—0,35. Сосудистая оболочка глазного яблока (хориоидеа) расположена под склерой, толщина ее 0,1—0,22 мм, она богата кровеносными сосудами, состоит из трех частей: собственно сосудистой оболочки, ресничного тела и радужки. Внутренняя (светочувствительная) оболочка глазного яблока — сетчатка, на всем протяжении прилежит изнутри к сосудистой оболочке. Она состоит из двух листков: внутреннего — светочувствительного (нервная часть) и наружного — пигментного. Сетчатка делится на две части — заднюю зрительную и переднюю (ресничную и радужную). Последняя не содержит светочувствительных клеток (фоторецепторов). Хрусталик — прозрачная двояковыпуклая линза диаметром около 9 мм, имеющая переднюю и заднюю поверхности, которые переходят одна в другую в области экватора. Линия, соединяющая наиболее выпуклые точки обеих поверхностей (полюсы), называется осью хрусталика, ее размеры колеблются в пределах 3,7—4,4 мм в зависимости от степени аккомодации. Коэффициент преломления хрусталика в поверхностных слоях равен 1,32, в центральных— 1,42. Хрусталик как бы подвешен на ресничном пояске (цинновой связке) между волокнами которого расположены пространства пояска (петинов канал), сообщающийся с камерами глаза. При натяжении связки (расслабление ресничной мышцы) хрусталик уплощается (установка на дальнее видение), при расслаблении связки (сокращение ресничной мышцы) выпуклость хрусталика увеличивается (установка на ближнее видение).

Стекловидное тело заполняет пространство между сетчаткой сзади, хрусталиком и задней строкой ресничного пояска спереди. Оно представляет собой аморфное межклеточное вещество желеобразной консистенции, его индекс светопреломления — 1,334. На передней поверхности стекловидного тела имеется ямка, в которой располагается хрусталик.

Камеры глаза. Радужка разделяет пространство между роговицей, с одной стороны, и хрусталиком с цинновой связкой и ресничным телом с другой, на две камеры — переднюю и заднюю,которые играют важную роль в циркуляции водянистой жидкости внутри глаза. Водянистая жидкость имеет очень низкую вязкость, она содержит около 0,02% белка. Благодаря отсутствию фибриногена она не свертывается. Обе камеры сообщаются между собой через зрачок. Благодаря циркуляции водянистой жидкости сохраняется равновесие между ее секрецией и всасыванием, что является фактором стабилизации внутриглазного давления. Как было описано ранее, глазное яблоко снаружи покрыто плотной фиброзной оболочкой, которая создает внутриглазное давление в пределах 20—25 мм рт. ст. (2666—3333 Па). Итак, световые лучи проходят через роговицу, водянистую жидкость передней камеры, зрачок, который в зависимости от интен- сивности света то расширяется, то сужается, водянистую жидкость задней камеры, хрусталик, стекловидное тело и, наконец, попадает на сетчатку. При этом пучок света направляется благодаря светопреломляющим средам (и в первую очередь — аккомодации хрусталика) на желтое пятно сетчатки, являющееся зоной наилучшего видения.

Вспомогательные органы глаза. Глазное яблоко у человека может вращаться так, чтобы на рассматриваемом предмете сходились зрительные оси обоих глазных яблок. Различают шесть глазодвигательных мышц: четыре прямые (верхняя, нижняя, медиальная, латеральная) и две косые (верхняя и нижняя) поперечнополосатые мышцы составляют двигательный аппарат глаза. Зрачковые реакции осуществляются с помощью двух систем гладких мышц в радужной оболочке. При сокращении кольцевой мышцы-сфинктера зрачок сужается (миоз); при сокращении мыш-цы-дилататора, волокна которой проходят в радужной оболочке дидиально, он расширяется (мидриаз). Сфинктер иннервируется парасимпатическими нервными волокнами, а дилататор, напротив, иннервируется симпатическими нервными волокнами. Зрачковые реакции — важные диагностические признаки, по которым можно выявить поражения сетчатки,
зрительного нерва, ствола мозга (глазодвигательные зоны), шейного отдела спинного мозга, а также областей, через которые проходят пре- и постганглионарные зрачководвигательные волокна (глубинных слоев шеи и др.).

Веки защищают глазное яблоко спереди. Они представляют собой кожные складки, ограничивающие глазную щель и закрывающие ее при смыкании век.

Слезный аппарат включает слезную железу и систему слезных путей. Проводящий путь зрительного анализатора. При попадании света на палочки и колбочки — отростки первых нейронов — генерируется нервный импульс, который передается биполярным нейроцитам (И нейроны), от них оптикокоганглиозным нейроцитам (III нейроны). Аксоны последних формируют зрительный нерв, который выходит из глазницы через канал зрительного нерва. Таким образом, в ответ на попадание световых волн в глаз зрачок сужается, а глазные яблоки поворачиваются в направлении пучка света. Под действием света в высокосветочувствительных клетках1 происходят сложные физико-химические процессы, в результате которых в клетке генерируется нервный импульс, который через зрительный нерв передается в мозг. Совместное действие палочек и колбочек осуществляет процесс зрения.

Для создания на сетчатке четкого изображения предметов, удаленных от глаза на различные расстояния, фокусное расстояние оптической системы в глазу должно изменяться. Это достигается изменением радиусов кривизны поверхностей хрусталика. Свойство глаза приспосабливаться к расстоянию, на котором находятся рассматриваемые предметы, называется аккомодацией. Аккомодация происходит непроизвольно с помощью сокращения или растяжения циллиарной мышцы (рис. 17.50).

Расстоянием наилучшего зрения Д называется такое расстояние от предмета до глаза, при котором ф оказывается максимальным при условии, что напряжение аккомодации невелико и глаз не устает. Для нормального глаза Д = 25 см. Нормальным считается глаз с хорошо сохранившейся способностью к аккомодации. С возрастом способность к аккомодации постепенно уменьшается.

Оптические недостатки глаза и аномалии рефракции У многих людей изображение на сетчатке всегда получается нечетким. Это бывает связано либо с необычной формой глазного яблока, либо с неправильной кривизной роговицы или хрусталика.

Близорукость, или миопия — осевая длина глазного яблока больше, удаленные объекты невозможно точно сфокусировать, поскольку фокальная плоскость находится перед центральной ямкой. Чтобы хорошо видеть вдали, близоруким людям нужны очки с вогнутыми линзами (рис. 17.52).

Дальнозоркость (гиперопия, или гиперметропия) — при обычной преломляющей силе диоптрического аппарата глаза его осевая длина слишком мала. У него недостаточен диапазон аккомодации для точной фокусировки на сетчатке изображения близко расположенных объектов. Чтобы компенсировать этот недостаток, требуются очки с выпуклыми линзами (рис. 17.53). Астигматизм — кривизна роговицы в вертикальной плоскости несколько больше, чем в горизонтальной; это приводит к зависимости преломляющей силы от угла падения лучей. Если разница не превышает 0,5 дп, такой астигматизм называют «физиологическим».

Катаракта — частичное или полное затемнение хрусталика.

Биомеханика органов слуха и равновесия (преддверно-улитковый орган) Органы слуха и равновесия (статического чувства) у человека объединены между собой в сложную систему, морфологически раз- деленную на три отдела (рис. 17.54): 1) наружное ухо (наружные слуховой проход и ушная раковина с мышцами и связками); 2) среднее ухо (барабанная полость, сосцевидные придатки, слуховая труба); 3) внутреннее ухо (перепончатый лабиринт, располагающийся в костном лабиринте внутри пирамиды височной кости). Наружное ухо. Ушная раковина — эластический хрящ сложной формы, покрытый кожей. Наружный слуховой проход состоит из хрящевого и костного отделов, длина его у взрослого человека около 33—35 мм, диаметр просвета колеблется на разных участках от 0,6 до 0,9 см. Среднее ухо. Барабанная полость воздухоносная, объемом около 1 см3, расположена в основании пирамиды височной кости, слизистая оболочка выстлана однослойным плоским эпителием, который переходит в кубический или цилиндрический. В полости находятся три слуховые косточки, сухожилия, натягивающие барабанную перепонку и стремя (обе мышцы поперечно-полосатые). Здесь же проходит барабанная струна — ветвь промежуточного нерва (VII). Барабанная полость продолжается в слуховую трубу, которая открывается в носовой части глотки глоточным отверстием слуховой трубы. Слуховые косточки — стремя, наковальня, молоточек, названы так благодаря своей форме. Косточки передают звуковые колебания от барабанной перепонки окну преддверия. Сосцевидные ячейки через сосцевидную пещеру сообщаются с барабанной полостью. Слуховая труба (Евстахиева) длиной около 3,5 см, диаметр просвета около 1 —2 мм, выполняет очень важную функцию — способствует выравниванию давления воздуха внутри барабанной полости по отношению к наружной среде. Щелевидное глоточное отверстие слуховой трубы, расположенное на боковой стенке носовой части глотки, открывается при акте глотания. Звуковые волны направляются в слуховую систему через наружное ухо, наружный слуховой проход — к барабанной перепонке. Эта тонкая, с перламутровым блеском мембрана отделяет слуховой проход от среднего уха, в котором также находится воз-Дух(рис. 17.55). Барабанная перепонка отделяет наружное ухо от среднего. Она представляет собой пластинку, состоящую из двух слоев коллагено-вых волокон, наружные волокна расположены радиально, а внутренние — циркулярно. Толщина перепонки около 0,1 мм, форма — эллипса, размеры — 9x11 мм, в центре ее — вдавление — место прикрепления к перепонке одной из слуховых косточек — молоточка.
Внутреннее ухо. В костном лабиринте, изнутри выстланном надкостницей, залегает перепончатый лабиринт, повторяющий формы костного. Между лабиринтами имеется щель, заполненная перилимфой. Костный лабиринт расположен между барабанной полостью и внутренним слуховым проходом и состоит из преддверия, трех полукружных каналов и улитки. Три костных полукружных канала лежат в трех взаимоперпендикулярных плоскостях: сагиттальной — передний канал, горизонтальной — латеральный, фронтальной — задний. Каждый полукружный канал имеет по две ножки, одна из которых (ампулярная костная ножка) перед впадением в преддверие расширяется, образуя ампулу. Соседние ножки переднего и заднего каналов соединяются, образуя общую костную ножку, поэтому три канала открываются в преддверие пятью отверстиями. Вестибулярный (преддверный) лабиринт — периферический отдел стато- кинетического анализатора (органа равновесия) — состоит из расположенных в костном преддверии эллиптического (маточка) и сферического мешочков, которые сообщаются между собой через тонкий каналец. При изменении силы тяжести, положения головы, тела, при ускорениях отолитовая мембрана и купол смещаются. Это приводит к напряжению волосков, что вызывает изменение активности различных ферментов волосковых клеток. Возбуждение через синапсы передается к клеткам преддверного узла. Аксоны образуют пред-дверную часть преддверно-улиткового нерва (VIII пара черепных нервов), который выходит вместе с улитковой частью через внутреннее слуховое отверстие в полость черепа. В мостмозжечковом углу волокна нерва входят в вещество мозга и подходят к вестибулярным ядрам, расположенным в области вестибулярного поля на дне ромбовидной ямки (II нейроны), а аксоны клеток данных ядер идут к ядрам шатра мозжечка через его нижнюю ножку (III нейроны) к спинному мозгу и в составе дорсального продольного пучка ствола головного мозга. От клеток вестибулярных ядер часть во- локон, перекрещиваясь, идет в таламус, где расположены III нейроны, откуда импульсы направляются к коре теменной и височной долей (корковые центры статокинетического анализатора). Улитковый лабиринт

— периферический отдел слухового анализатора. Он заполнен эндолимфой и представляет собой соеди- нительнотканный мешок длиной около 3,5 см. Тела афферентных нейронов (первые нейроны) залегают в спиральном ганглии. Наружные волосковые клетки значительно чувствительнее к звукам большой интенсивности, чем внутренние. Высокие звуки раздражают только волосковые клетки, расположенные на нижних завитках улитки, а низкие звуки — волосковые клетки вершины улитки и часть клеток на нижних завитках. Функция слухового анализатора. Звуковые волны передаются через наружный слуховой проход и достигают барабанной перепонки. Ее колебания передаются через цепь слуховых косточек на окно преддверия (см. рис. 17.55). Движения стремени в окне преддверия вызывают колебания перилимфы лестницы преддверия, которые через отверстия в области верхушки улитки передаются перилимфе барабанной лестницы и по ней к окну улитки. Колебания перилимфы воспринимаются эндолимфой, происходит волнообразное движение базилярной мембраны, которая в зависимости от частоты и интенсивности звука имеет соответствующую амплитуду колебаний по всей своей длине. Благодаря этим колебаниям и взаимодействиям волосковых клеток с покровной мембраной в рецепторных клетках возникают нервные импульсы. Слух анализирует звуки, определяя их источник, громкость, тон и тембр. Громкость (сила) звука зависит от амплитуды колебаний. Громкость любого звука выражают в фонах — УЗД тона с частотой 1 кГц с равной громкостью.
Тон — это звук определенной высоты, которая характеризуется частотой колебаний. Основной тон — наименьшая частота сложного акустического сигнала. Чистый тон — синусоидальный акустический сигнал данной частоты. Тембр — субъективная характеристика качества звука, зависящая в основном от его спектра, от числа и интенсивности составляющих гармоник. В спектре низких звуков до 20 гармоник, средних — до 10, высоких — 2—3. Наименее чувствительно ухо к низким частотам. Например, его чувствительность к тону 100 Гц в 1000 раз меньше, чем к тону 1000 Гц. С возрастом острота слуха постепенно падает. Старение уха можно объяснить уменьшением эластичности тканей его структур.

1   ...   9   10   11   12   13   14   15   16   ...   30


написать администратору сайта