Главная страница
Навигация по странице:

  • Факторы водной среды.

  • Конспект лекций по экологии для заочников. Лекция Краткая история и предмет экологии


    Скачать 0.87 Mb.
    НазваниеЛекция Краткая история и предмет экологии
    АнкорКонспект лекций по экологии для заочников.doc
    Дата23.03.2017
    Размер0.87 Mb.
    Формат файлаdoc
    Имя файлаКонспект лекций по экологии для заочников.doc
    ТипЛекция
    #4111
    КатегорияЭкология
    страница10 из 15
    1   ...   7   8   9   10   11   12   13   14   15

    Адаптации к засушливым условиям у растений и животных

    Примеры

    Уменьшение потери воды

    Листья превращены в иглы или колючки

    Погруженные устьица

    Листья свернуты в цилиндр

    Толстая восковая кутикула

    Толстый стебель с большим отношением объема к поверхности

    Опушенные листья

    Сбрасывание листьев при засухе

    Устьица открыты ночью и закрыты днем

    Эффективная фиксация СО2 ночью при неполностью открытых устьицах

    Выделение азота в виде мочевой кислоты

    Удлиненная петля Генле в почках

    Ткани выносливы к высоким температурам из-за уменьшения потоотделения или транспирации

    Животные прячутся в норах

    Дыхательные отверстия прикрыты клапанами

    Увеличение поглощения воды

    Обширная поверхностная корневая система и глубоко проникающие корни

    Длинные корни

    Прорытие ходов к воде

    Запасание воды

    В слизистых клетках и клеточных стенках

    В специализированном мочевом пузыре

    В виде жира (вода - продукт окисления)

    Физиологическая устойчивость к потере воды

    При видимом обезвоживании сохраняется жизнеспособность

    Потеря значительной части массы тела и быстрое ее восстановление при наличии доступной воды

    “Уклонение” от проблемы

    Переживают неблагоприятный период в виде семян

    Переживают неблагоприятный период в виде луковиц или клубней

    Распространение семян в расчете на то, что некоторые из них попадут в благоприятные условия

    Поведенческая реакция избегания

    Летняя спячка в слизистом коконе

    Cactaceae, Euphorbiaceae (молочаи), хвойные деревья

    Pinus, Ammophila

    Ammophila

    Листья большинства ксерофитов;

    насекомые

    Cactaceae и Euphorbiaceae (“суккуленты”)

    Многие альпийские растения

    Fouquieria splendens

    Crassulaceae (толстянковые)

    С4-растения, например, Zea mays

    Насекомые, птицы и некоторые рептилии

    Пустынные млекопитающие, например, верблюд, пустынная крыса

    Многие пустынные растения, верблюд

    Многие мелкие пустынные млекопитающие, например, пустынная крыса

    Многие насекомые

    Многие Cactaceae, например, Opuntia, и Euphorbiaceae

    Многие альпийские растения, например, Leontopodium alpinum (эдельвейс)

    Термиты

    Cactaceae и Euphorbiaceae

    Пустынная лягушка

    Пустынная крыса

    Некоторые эпифитные папоротники и плауны, многие мохообразные и лишайники, осока Carex physoides

    Lumbricus terrestris (теряет до 70% массы), верблюд (теряет до 30%)

    Эшшольция калифорнийская

    Некоторые лилии

    Различные растения

    Почвенные организмы, например, клещи, дождевые черви

    Дождевые черви, двоякодышащие рыбы

    Как правило, неравномерное распределение осадков по временам года встречается в тропиках и субтропиках, где нередко хорошо выражены влажный и сухой сезоны. В тропическом поясе сезонный ритм влажности регулирует сезонную активность организмов аналогично сезонному ритму тепла и света в условиях умеренного пояса. В умеренных климатах осадки обычно распределены по сезонам более равномерно (хотя существует много исключений). В таблице 13.3 приблизительно указаны типы климаксных биотических сообществ, которые можно ожидать при разном годовом количестве осадков, равномерно распределенном по временам года, в умеренных широтах.

    Таблица 13.3

    Типы биотических сообществ умеренного пояса в зависимости от годового

     количества осадков

    годовое количество осадков (в мм)

    тип сообществ

    0 - 250

    пустыня

    250 - 750

    степь, саванна или редколесье

    750 - 1250

    сухой лес

    более 1250

    влажный лес

    В действительности тип биоты определяется не одним количеством осадков, но равновесием между осадками и потенциальной эвапотранспирацией.

    Влажность - параметр, характеризующий содержание водяного пара в воздухе. Абсолютной влажностью называют количество водяного пара в воздухе, выраженное через массу воды на единицу массы воздуха. В связи с зависимостью количества пара, удерживаемого воздухом, от температуры и давления, введено понятие относительной влажности, то есть отношение содержащегося в воздухе пара к насыщающему пару при данных температуре и давлении. Так как в природе существует суточный ритм влажности - повышение ночью и снижение днем, а также ее колебания по вертикали и горизонтали, этот фактор наряду со светом и температурой играет важную роль в регулировании активности организмов. Влажность изменяет эффекты высоты температуры. Например, при условиях влажности близких к критическим, температура оказывает более важное лимитирующее влияние. Аналогично, влажность играет более критическую роль, если температура близка к предельным значениям. Крупные водоемы значительно смягчают климат суши, так как для воды характерна большая скрытая теплота парообразования и таяния. Фактически существуют два основных типа климата: континентальный с крайними значениями температуры и влажности, и морской, которому свойственны менее резкие колебания, что объясняется смягчающим влиянием крупных водоемов.

    Доступный запас поверхностной воды зависит от количества осадков в данном районе, но эти величины не всегда совпадают. Так, пользуясь подземными источниками, куда вода поступает из других районов, животные и растения могут получать больше воды, чем ее поступает с осадками. И наоборот, дождевая вода иногда сразу же становится недоступной для организмов.
    Газовый состав атмосферы также является важным климатическим фактором. Примерно 3 -3,5 млрд. лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный кислород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами. Из-за отсутствия кислорода не существовало озонового экрана, задерживающего ультрафиолетовое излучение Солнца. С течением времени за счет биотических и абиотических процессов в атмосфере планеты стал накапливаться кислород; началось формирование озонового слоя. Примерно в середине палеозоя потребление кислорода сравнялось с его образованием, в этот период содержание О2 в атмосфере было близко к современному - около 20%. Далее, с середины девона, наблюдаются колебания в содержании кислорода. В конце палеозоя произошло заметное, примерно до 5% современного уровня, снижение содержания кислорода и повышение содержания углекислого газа, сопровождавшееся изменениями климата и, по-видимому, послужившее толчком к обильному "автотрофному" цветению, создавшему запасы ископаемого углеводородного топлива. Затем последовало постепенное возвращение к атмосфере с низким содержанием углекислого газа и высоким - кислорода, после чего отношение О2/СО2 остается в состоянии так называемого колебательного стационарного равновесия.

    Химический состав современной атмосферы представлен в таблице 13.4.

    Таблица 13.4

    Концентрация и общее количество газов в атмосфере

    вещество

    концентрация в чистом сухом воздухе на уровне моря

    общее количество в атмосфере (109 т)

    азот (N2)

    78,084%а

    3900000

    кислород (O2)

    20,9476%

    1200000

    аргон (Ar)

    0,934%

    67000

    водяной пар (Н2О)

    не учитывается

    14000

    диоксид углерода (СО2)

    346 млн-1

    2600

    неон (Ne)

    18,18 млн-1

    65

    криптон (Кr)

    1,14 млн-1

    17

    метан (CH4)

    2 млн-1

    4

    гелий (Не)

    5,24 млн-1

    4

    озон (О3) летом

    <0,07 млн-1

    3

    зимой

    <0,02 млн-1




    ксенон (Хе)

    0,087 млн-1

    2

    оксид азота (N2O)

    0,5 млн-1

    2

    оксид углерода (СО)

    следы

    0,6

    водород (Н2)

    0,5 млн-1

    0,2

    аммиак (NН3)

    следы

    0,02

    оксид азота (NO2)

    <0,02 млн-1

    0,013

    (NO)

    следы

    0,005

    диоксид серы (SO2)

    <1 млн-1

    0,002

    сероводород (H2S)

    следы

    0,001

    a По объему.








    Из таблицы следует, что атмосфера состоит в основном из азота, кислорода и относительно меньшего количества аргона и углекислого газа. Все остальные имеющиеся в атмосфере газы содержатся лишь в следовых количествах. Особое значение для биоты имеет относительное содержание кислорода и углекислого газа. Эти биогенные газы оказывают регулирующее действие на процесс фотосинтеза и являются лимитирующими для многих высших растений. У многих растений удается повысить эффективность фотосинтеза, повысив концентрацию углекислого газа; снижение концентрации кислорода также интенсифицирует этот процесс. В опытах на бобовых и многих других растениях экспериментально доказано, что понижение содержания кислорода в воздухе до 5% повышает интенсивность фотосинтеза на 50%. Крайне важную роль играет также азот. Это важнейший биогенный элемент, участвующий в образовании белковых структур организмов.

    Большое значение имеют также физические свойства атмосферы: воздух оказывает лишь незначительное сопротивление движению и не может служить опорой для наземных организмов, и это непосредственно сказалось на их строении. В то же время некоторые группы животных стали использовать полет как способ передвижения. В атмосфере, так же как в океане, постоянно происходит циркуляция, энергию для которой поставляет Солнце. Крупномасштабным результатом циркуляции воздушных масс является перераспределение водяных паров, так как атмосфера захватывает их в одном месте (где вода испаряется), переносит и отдает в другом месте (где выпадают осадки), выравнивание температуры, перераспределение других газов, поступающих в атмосферу, в том числе загрязняющих, с последующим вымыванием их из атмосферы с осадками.

    Ветер оказывает лимитирующее воздействие на активность и даже распространение организмов. Ветер способен даже изменять внешний вид растений, особенно в тех местообитаниях, например в альпийских зонах, где лимитирующее воздействие оказывают другие факторы. В открытых горных местообитаниях ветер лимитирует рост растений, приводит к искривлению растений с наветренной стороны. Кроме того, ветер усиливает эвапотранспирацию в условиях низкой влажности.

    Большое значение имеют бури, хотя их действие сугубо локально. Ураганы, да и обычные ветры, способны переносить животных и растения на большие расстояния и тем самым изменять состав сообществ.

    Барометрическое давление, по-видимому, не является лимитирующим фактором непосредственного действия, однако оно имеет прямое отношение к погоде и климату, которые оказывают непосредственное лимитирующее воздействие.

    Факторы водной среды.

    Водные условия создают своеобразную среду обитания организмов, отличающуюся от наземной прежде всего плотностью и вязкостью. Плотность воды примерно в 800 раз, а вязкость примерно в 55 раз выше, чем у воздуха. Вместе с плотностью и вязкостью важнейшими физико-химическими свойствами водной среды являются: постоянные перемещения водных масс в пространстве, способствующие сохранению физических и химических характеристик; температурная стратификация, то есть изменение температуры по глубине водного объекта; периодические изменения температуры; прозрачность воды, определяющая световой режим под ее поверхностью. От прозрачности зависит фотосинтез зеленых и пурпурных водорослей, фитопланктона, высших растений.
    Как и в атмосфере важную роль играет газовый состав водной среды. В водных местообитаниях количество кислорода, углекислого газа и других атмосферных газов, растворенных в воде и потому доступных организмам, сильно варьирует во времени. В водоемах с высоким содержанием органических веществ кислород является лимитирующим фактором первостепенной важности.

    Содержание кислорода в поверхностном слое воды зависит, главным образом, от обмена газом между воздухом и водой и варьирует в пределах 6 -12 млн-1. Растворимость газа уменьшается при повышении температуры и увеличении солености воды. Однако на большой глубине, где отсутствует контакт с атмосферой, этот обмен зависит от расхода кислорода на биологические процессы и пополнения его запасов при смешивании с водой, более богатой кислородом. Как правило, в гидросфере отсутствует равномерное распределение кислорода. Зональность распределения, главным образом, обусловлена ограниченными скоростями смешивания и диффузии кислорода, которые в свою очередь зависят от разности температур, плотности, содержания соли и растворенного кислорода, а также от скорости и направления движения смеси относительно окружающей массы воды. Скорость диффузии растворенного кислорода в массу воды, истощенную по кислороду, является, таким образом, весьма неопределенной переменной величиной, уменьшающейся во времени в зависимости от разницы в содержании кислорода в двух соседних областях, и поэтому является локальной характеристикой.

    Всякий раз, когда потребление кислорода превышает восстановление его запасов, возникает более или менее устойчивое состояние истощения, что оказывает заметное влияние на существование живых организмов в смеси воды и отходов, обедненной кислородом. Масштабы этого влияния зависят от относительных скоростей потребления и восстановления кислорода, движения воды и могут быть полностью определены только после нанесенного ущерба.
    Когда концентрация растворенного кислорода снижается слишком сильно (менее 2 млн-1), некоторые виды бактерий начинают получать необходимый им кислород за счет восстановления сульфат-иона. В этом случае водная масса рассматривается как бескислородная система. Для системы становятся характерными совершенно иные химические процессы, чем для обычной воды, содержащей кислород; так, например, доминирующую роль в процессе продукции органического вещества в экосистеме будет играть бактериальный фотосинтез.

    Система диоксид углерода - карбонат является одной из наиболее сложных и важных для гидросферы. Она участвует в обмене воздух - поверхностные слои воды, влияет на химию водной системы, биологическую структуру организмов и отложение осадка, содержащего углерод. От этой системы зависит рН среды, что непосредственно влияет на некоторые химические равновесия в данной локальной системе, особенно в отношении ионов, образующих комплексы. Она непосредственно влияет на биологический цикл организмов, в которых углерод используется в процессах развития, гибели и разложения.

    В настоящее время принято общее содержание СО2 в гидросфере, равное примерно 4·10-3 моль/л, из них более 80% в форме НСО3-. Распределение диоксида углерода неравномерно и частично зависит от биологической активности в данном районе. Подобно кислороду, содержание СО2 в поверхностных слоях воды является функцией его содержания в атмосфере и парциального давления. Однако схемы распределения диоксида углерода и кислорода сильно отличаются друг от друга: наблюдается единая тенденция, к повышению содержания углерода по мере увеличения глубины вследствие оседания продуктов распада погибших организмов из биологически более богатого поверхностного слоя воды.

    Усваиваемый углерод является существенной частью питательных веществ и имеет первостепенное значение во всей экологической структуре гидросферы и локализованных районов в особенности. Диоксид углерода играет основную роль в процессе фотосинтеза, и его концентрация, по-видимому, коррелирует с освещенностью или поступлением энергии для таких районов, где реакция фотосинтеза не подавляется другими физико-химическими процессами. Однако высокое содержание СО2 является лимитирующим фактором для животных, так как оно сопровождается низким содержанием кислорода. Например, при слишком высоком содержании свободного углекислого газа в воде погибают многие рыбы.

    Кислотность - концентрация (активность) ионов водорода - тесно связана с карбонатной системой. Характеризуется величиной рН ( рН = -lg [ H+] ). Величина рН изменяется в диапазоне 0 < рН < 14; при рН = 7 среда нейтральная, при рН<7 - кислая, при рН>7 - щелочная. Если кислотность не приближается к крайним значениям, то сообщества способны компенсировать изменения этого фактора - толерантность сообщества к диапазону рН весьма значительна. Кислотность может служить индикатором скорости общего метаболизма сообщества. В водах с низким рН содержится мало биогенных элементов, поэтому продуктивность здесь крайне мала.

    Соленость - содержание карбонатов, сульфатов, хлоридов и т.д. - является еще одним значимым абиотическим фактором в водных объектах. В пресных водах солей мало, причем около 80% составляют карбонаты. Содержание же минеральных веществ в мировом океане составляет в среднем 35 г/л. Организмы открытого океана обычно стеногалинны, тогда как организмы прибрежных солоноватых вод в общем эвригалинны. Концентрация солей в жидкостях тела и тканях большинства морских организмов изотонична концентрации солей в морской воде, так что здесь не возникает проблем с осморегуляцией.

    Течение не только сильно влияет на концентрацию газов и питательных веществ, но и прямо действует как лимитирующий фактор. Многие речные растения и животные морфологически и физиологически особым образом приспособлены к сохранению своего положения в потоке: у них есть вполне определенные пределы толерантности к фактору течения.

    Гидростатическое давление в океане имеет большое значение. С погружением в воду на 10 м давление возрастает на 1 атмосферу. В самой глубокой части океана давление достигает 1000 атмосфер. Многие животные способны переносить резкие колебания давления, особенно, если у них в теле нет свободного воздуха. В противном случае возможно развитие газовой эмболии. Высокие давления, характерные для больших глубин, как правило, угнетают процессы жизнедеятельности.
    1   ...   7   8   9   10   11   12   13   14   15


    написать администратору сайта