Главная страница
Навигация по странице:

  • Концепция экосистемы.

  • Изучение экосистем.

  • Стабильность экосистем.

  • Лекция 3. Энергия в экологических системах

  • Обзор фундаментальных концепций, связанных с энергией.

  • Конспект лекций по экологии для заочников. Лекция Краткая история и предмет экологии


    Скачать 0.87 Mb.
    НазваниеЛекция Краткая история и предмет экологии
    АнкорКонспект лекций по экологии для заочников.doc
    Дата23.03.2017
    Размер0.87 Mb.
    Формат файлаdoc
    Имя файлаКонспект лекций по экологии для заочников.doc
    ТипЛекция
    #4111
    КатегорияЭкология
    страница2 из 15
    1   2   3   4   5   6   7   8   9   ...   15

    Лекция 2. Экологическая система. Принципы и концепции

    1. Концепция экосистемы.

    2. Изучение экосистем.

    3. Стабильность экосистем.

    Если мы хотим, чтобы наше общество перешло к целостному решению проблем, возникающих на уровне биомов и биосферы, то должны прежде всего изучать экосистемный уровень организации.
    Концепция экосистемы.

    Живые организмы и их абиотическое окружение неразделимо связаны друг с другом и находятся в постоянном взаимодействии. Любая биологическая система, включающая все совместно функционирующие организмы (биотическое сообщество) на данном участке и взаимодействующая с физической средой таким образом, что поток энергии создает четко определенную трофическую структуру, видовое разнообразие и круговорот веществ между живой в неживой частями, представляет собой экологическую систему или экосистему.
    Долговременное функционирование экосистемы обеспечивают три основных компонента - сообщество, поток энергии и круговорот веществ.
    Поток энергии направлен в одну сторону; часть поступающей солнечной энергии преобразуется сообществом и переходит на качественно более высокую ступень, трансформируясь в органическое вещество, представляющее собой более концентрированную форму энергии, чем солнечный свет; но большая часть энергии деградирует, проходит через систему и покидает ее в виде низкокачественной тепловой энергии ("тепловой сток"). В конечном итоге эта судьба ожидает всю энергию, поступающую в биосферу. Энергия может накапливаться в экосистеме, затем снова высвобождаться или экспортироваться в другую систему, но ее нельзя использовать вторично.

    В отличие от энергии элементы питания, в том числе биогенные элементы, необходимые для жизни (углерод, водород, кислород, азот, фосфор и др.), не только могут, но и должны использоваться многократно.

    Все экосистемы, даже самая крупная - биосфера, являются открытыми системами: они должны получать и отдавать энергию. Разумеется, экосистемы, входящие в биосферу, также в разной степени открыты для потоков веществ, для иммиграции и эмиграции организмов. Поэтому концепция экосистемы должна учитывать существование связанных между собой и необходимых для функционирования и самоподдержания экосистемы "среды на входе" и "среды на выходе": в концептуально законченную экосистему входит среда на входе, среда на выходе и система, т.е.:

    Экосистема = IE + S + OE,

    где IE - среда на входе; S - система; OE - среда на выходе.
    Данная схема решает проблему, связанную с проведением границ рассматриваемой единицы, поскольку в этом случае не имеет значения, как мы вычленяем исследуемую часть экосистемы. Часто удобными оказываются естественные границы, например, берег озера или опушка леса; или административные, например границы города; но эти границы могут быть и условными, если их точно определить геометрически. Конечно, экосистема не ограничена "ящиком" в центре схемы, поскольку если бы этот "ящик" был герметичным, то его живое содержимое (озеро или город) не вынесло бы такого заключения. Функционирующая реальная экосистема должна иметь вход и в большинстве случаев пути оттока переработанной энергии и веществ.

    Изучение экосистем.

    При изучении больших сложных экосистем, таких, как озера и леса, экологи используют четыре основных подхода:

    1) холистический (от греч. holos - целый), при котором воссоздание общей картины важнее проработки частных деталей. Холистический подход предполагает измерение поступлений и выхода энергии и различных веществ, оценку совокупных и эмерджентных свойств, а затем в случае необходимости - изучение его составных частей; экосистема рассматривается как "черный ящик", т.е. как объект, функция которого может быть описана без выяснения его внутреннего содержания.

    2) мерологический (от греч. meros - часть), при котором сначала изучаются свойства основных частей, а затем эти сведения экстраполируются на систему в целом. Очевидно, что важные эмерджентные свойства при мерологическом подходе могут быть упущены. Но, что самое главное, конкретный организм в разных системах может вести себя совершенно по-разному, и эта изменчивость, очевидно, связана с тем, как данный организм взаимодействует с другими компонентами экосистемы. Например, многие насекомые в агроэкосистеме являются опасными вредителями, а в своих естественных местообитаниях они не опасны, так как там их держат под контролем паразиты, конкуренты, хищники или химические ингибиторы.

    3) экспериментальные методы, т.е. нарушение тем или иным способом структуры или функции экосистемы в надежде, что реакция системы на такое нарушение позволит проверить гипотезы, основанные на наблюдениях. Экспериментальные методы - основа "стрессовой", или "пертурбационной" экологии.

    4) методы моделирования. Модель - это абстрактное описание того или иного явления реального мира, позволяющее делать предсказания относительно этого явления. В своей простейшей форме модель может быть словесной или графической (неформализованной). Однако если мы хотим получить достаточно надежные количественные прогнозы, то модель должна быть статистической и строго математической (формализованной).

    Моделирование обычно начинают с построения схемы, или графической модели, часто представляющей собой блок-схему. В работающей модели экологической ситуации имеется как минимум четыре ингредиента или компонента, а именно: 1) источник энергии или другая внешняя движущая сила, 2) свойства, которые системоаналитики называют переменными состояний, 3) направления потоков, связывающих действа между собой и с действующими силами через потоки энергии и вещества; и 4) взаимодействия или функции взаимодействий там, где взаимодействуют между собой силы и свойства, изменяя, усиливая или контролируя перемещения веществ и энергии или создавая эмерджентные свойства.

    Характеристика хорошей модели должна включать три компонента: 1) анализируемое пространство (границы системы), 2) субсистемы (компоненты), считающиеся важными для общего функционирования, и 3) рассматриваемый временной интервал. После того как мы правильно определили экосистему, экологическую ситуацию или проблему и установили ее границы, мы выдвигаем доступную для проверки гипотезу или серию гипотез, которую можно принять или отвергнуть хотя бы предварительно, ожидая результатов дальнейших экспериментов или анализа. Более подробные сведения об экологическом моделировании можно найти в работах Холла и Дэя (1979), а также Медоуза (1982).

    Стабильность экосистем.

    Стабильность экосистемы обеспечивается непрерывным потоком энергии, который задает и поддерживает круговороты веществ; а также развитыми информационными сетями, включающими потоки физических и химических сигналов, связывающих все части системы и управляющих (или регулирующих) ею как одним целым. В результате взаимодействия круговоротов веществ и потоков энергии, а также сигналов обратной связи от субсистем (когда часть сигналов с выхода поступает на вход) в экосистемах возникает саморегулирующийся гомеостаз без регуляции извне (как это бывает в механических системах; например, в обычной системе регулировки температуры в помещении термостат управляет печью) или "постоянной точки" (так у теплокровных животных регуляция температуры тела осуществляется специальным центром головного мозга). Управляющие функции экосистемы сосредоточены внутри нее и диффузны (а не направлены вовне и специализированы). В число управляющих механизмов, действующих на уровне экосистемы, входят микробные субсистемы, регулирующие накопление и высвобождение биогенных элементов, поведенческие механизмы и субсистемы "хищник - жертва", регулирующие плотность популяции, а также многие другие. Помимо системы обратной связи стабильность обеспечивается избыточностью функциональных компонентов. Например, если в сообществе имеется несколько видов автотрофов, каждый из которых характеризуется своим температурным диапазоном функционирования, то скорость фотосинтеза сообщества в целом может оставаться неизменной, несмотря на колебания температуры.
    По определению, стабильность - это свойство любого тела (системы), заставляющее его возвращаться к исходному состоянию после того, как это тело выведено из состояния равновесия. Это представляется достаточно ясным, но на практике специалисты разных областей (например, инженеры, экологи или экономисты) могут вкладывать в термин "стабильность" разный смысл, особенно при попытках оценить меру стабильности и выразить ее количественно. Для целей экологии можно выделить два "типа" стабильности:

    Резистентная устойчивость - это способность экосистемы сопротивляться пертурбациям (нарушениям), поддерживая неизменной свою структуру и функцию. Упругая устойчивость-это способность системы восстанавливаться после того, как ее структура и функция были нарушены.

    Эти два типа стабильности связывает обратная зависимость - системе трудно одновременно развить оба типа устойчивости. Так, калифорнийский лес из секвойи довольно устойчив к пожарам (для этих деревьев характерны толстая кора и другие адаптации), но если он все же сгорит, то восстанавливается очень медленно или вовсе не восстанавливается. Напротив, калифорнийские заросли чапарраля очень легко выгорают (низкая резистентная устойчивость), но быстро восстанавливаются за несколько лет (отличная упругая устойчивость). Как правило, при благоприятных физических условиях среды экосистемы в большей степени проявляют резистентную, а не упругую устойчивость, а в изменчивых физических условиях наблюдается прямо противоположное.

    Гомеостатические механизмы функционируют в определенных пределах, за которыми уже ничем не ограничиваемые положительные обратные связи, усиливающие отклонения, приводят к гибели системы, если невозможно произвести дополнительную настройку. По мере нарастания стресса система, продолжая оставаться управляемой, может оказаться неспособной к возвращению на прежний уровень. На самом деле, согласно нашедшей широкое признание теории Холдинга (1973), для популяций и, как можно предположить, для экосистем характерно не одно, а несколько состояний равновесия и после стрессовых воздействий они часто возвращаются не в то состояние равновесия, из которого были выведены, а в другое. Вспомним, например, что значительное, хотя и не все количество СО2, поступающего в атмосферу в результате деятельности человека, поглощается карбонатной и другими системами моря, но по мере увеличения притока СО2 в атмосферу устанавливаются новые равновесия на несколько более высоком уровне. В этом случае даже небольшое нарушение может иметь далеко идущие последствия. Во многих случаях подлинно надежный гомеостатический контроль устанавливается только после периода эволюционной "подгонки". Для новых экосистем (например, систем, создаваемых современным сельским хозяйством) или недавно сложившихся комплексов "паразит - хозяин" обычно характерны более резкие колебания и чрезмерный рост численности по сравнению со зрелыми системами, компоненты которых имели возможность приспособиться друг к другу.

    Степень стабильности, достигаемая конкретной экосистемой, зависит не только от ее истории и эффективности ее внутренних управляющих механизмов, но и от характера среды на входе и, возможно, от сложности экосистемы. Как правило, экосистемы имеют тенденцию становиться сложнее в благоприятной физической среде, чем в среде со схоластическими (случайными, непредсказуемыми) нарушениями на входе, например штормами. Функциональная сложность, по-видимому, в большей степени, чем структурная, увеличивает стабильность системы, так как возрастает потенциально возможное число петель обратной связи; однако причинно-следственные взаимоотношения между сложностью и стабильностью изучены еще не достаточно.
    Лекция 3. Энергия в экологических системах

    1. Обзор фундаментальных концепций, связанных с энергией.

    2. Жизнь как термодинамический процесс.

    3. Энергетические характеристики среды.
    Обзор фундаментальных концепций, связанных с энергией.

    Важнейшим аспектом экологии являются энергетические взаимоотношения в экологических системах. Но прежде чем перейти к изучению энергетики экосистем, необходимо рассмотреть некоторые основы термодинамики. Энергию определяют как способность производить работу. Свойство энергии описывается следующими законами:

    Первый закон термодинамики, или закон сохранения энергии, гласит, что энергия может переходить из одной формы в другую, но она не исчезает и не создается заново.

    С точки зрения первого закона возможны и равновероятны любые процессы, в которых вместо исчезнувшего вида энергии появится эквивалентное количество другого вида. Так, первому закону не противоречило бы поднятие груза или закручивание какой-либо пружины за счет внутренней энергии окружающей среды. Почему, в самом деле, камень, лежащий на земле, не может подняться на какую-то высоту за счет охлаждения окружающего воздуха? Однако не поднимается. Переход теплоты от менее нагретого тела к более нагретому означал бы лишь перераспределение энергии внутри системы и также не противоречил первому закону. Однако известно, что сосуд с водой никогда не закипит на холодной плите. Иными словами, первый закон ничего не говорит о возможности и вероятности того или иного процесса, связанного с превращением энергии или ее перераспределением.

    Между тем, если внимательно рассмотреть всевозможные процессы, протекающие в окружающем мире, а также проводимые нами самими, окажется, что их можно разбить на две существенно различающиеся группы. Во-первых, это процессы самопроизвольные, т.е. идущие сами собой. Для их проведения не только не затрачивается работа, но будучи поставленными в соответствующие условия, они сами могут произвести работу в количестве, пропорциональном происходящему изменению (например, переход теплоты от горячего тела к холодному, переход энергии заряженного аккумулятора в теплоту и т.д.). Самопроизвольные процессы ведут систему к состоянию равновесия, где силы, вызывающие процессы уравновешиваются (например, выравниваются давление, температура, концентрация и т.д.). В случае попытки повернуть самопроизвольные процессы вспять, мы имеем дело уже с несамопроизвольными процессами. Они не идут сами собой. Для их проведения необходимо затратить работу в количестве, пропорциональном происходящему изменению. Критерии самопроизвольного или несамопроизвольного изменения системы, а также критерии равновесия устанавливает второй закон термодинамики. Второй закон термодинамики, или закон энтропии, формулируется по-разному. Для целей экологии наиболее удобными являются следующие формулировки:

    - процессы, связанные с превращениями энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную - деградирует;

    - поскольку некоторая часть энергии всегда рассеивается в виде недоступной для использования тепловой энергии, эффективность самопроизвольного превращения кинетической энергии (например, света) в потенциальную (например, энергию химических соединений протоплазмы) всегда меньше 100%.

    Энтропия (от греческого entropia - поворот, превращение) - мера количества энергии, которая становится недоступной для использования, мера изменения упорядоченности, которая происходит при деградации энергии. Система обладает низкой энтропией, если способна создавать и поддерживать высокую степень внутренней упорядоченности за счет непрерывного рассеяния легко используемой, концентрированной энергии (например, света или пищи) и превращения ее в энергию, используемую с трудом (например, в тепловую). Закон сохранения энергии и закон энтропии - это фундаментальные законы природы, имеющие универсальное значение. Из этих физических законов нет исключений, и никакие технические изобретения не могут их нарушить. Любая искусственная или естественная система, не подчиняющаяся этим законам, обречена на гибель.

    Легко показать, каким образом сформулированные фундаментальные физические концепции можно отнести к экологии. Все разнообразие проявлений жизни сопровождается превращениями энергии, хотя энергия при этом не создается и не уничтожается (первый закон термодинамики). Энергия, получаемая в виде света поверхностью Земли, уравновешивается энергией, излучаемой с поверхности Земли в форме невидимого теплового излучения. Сущность жизни состоит в непрерывной последовательности таких изменений, как рост, самовоспроизведение и синтез сложных химических соединений. Без переноса энергии, сопровождающего все эти изменения, не было бы ни жизни, ни экологических систем. Экология, по сути дела, изучает связь между светом и экологическими системами и способы превращения энергии внутри системы. Ибо отношения между растениями-продуцентами и животными-консументами, между хищником и жертвой, не говоря уже о численности и видовом составе организмов в каждом местообитании, лимитируются и управляются потоком энергии, превращающейся из ее концентрированных форм в рассеянные.

    Значительная часть солнечного излучения, поступающего в биосферу, поглощается поверхностью земли, воды или биологическими объектами, которые при этом нагреваются. В результате световая энергия превращается в другую форму энергии - тепловую, то есть в энергию колебательных и поступательных движений атомов и молекул. В ходе неравномерного поглощения солнечных лучей сушей и водой возникают теплые и холодные области - это служит причиной образования воздушных потоков, которые могут вращать ветряные двигатели и выполнять другую работу, скажем, поднимать воду насосом против действия силы тяжести. Итак, в этом случае энергия света превращается в тепловую энергию земной поверхности, а затем в кинетическую энергию движущегося воздуха, которая выполняет работу подъема воды. При поднятии воды энергия не исчезает, а превращается в потенциальную, поскольку энергию, скрытую в поднятой воде можно снова превратить в какую-либо другую форму энергии, если дать воде опять упасть. Энергия в какой-либо форме всегда пропорциональна количеству той формы энергии, в которую она переходит. "Потребленная энергия" не расходуется, она только переводится из состояния, в котором ее легко превратить в работу, в состояние с малой возможностью использования. Как следует из второго закона термодинамики, любой вид энергии в конечном счете превращается в тепло - форму энергии, наименее пригодную для превращения в работу и наиболее легко рассеивающуюся. Так, попав на Землю, лучистая энергия солнца стремится превратиться в тепловую. Лишь очень небольшая часть световой энергии, поглощенной зелеными растениями, превращается в потенциальную энергию пищи, большая же ее часть превращается в тепло, покидающее затем и растение, и экосистему, и биосферу. Весь остальной живой мир получает необходимую потенциальную химическую энергию из органических веществ, созданных фотосинтезирующими растениями или хемосинтезирующими микроорганизмами. Например, животные поглощают химическую потенциальную энергию пищи и большую ее часть превращают в тепло, а меньшую вновь переводят в химическую потенциальную энергию заново синтезируемой протоплазмы. На каждом этапе передачи энергии от одного организма к другому значительная часть ее превращается в тепло; рассеивается в соответствии со вторым законом термодинамики.

    Мы проследили два основных пути превращения кинетической энергии солнечного света. Первый путь - путь прямого превращения в энергию теплового излучения. И второй - путь поглощения солнечного света фотосинтезирующими организмами с продуцированием органического вещества. В каждом случае попытаемся понять, какую форму энергии, концентрированную или рассеянную, затрагивает превращение, на каких этапах превращение энергии происходит количественно (схема 3.1):

     

    кинетическая энергия

    солнечного света

    количественно

    тепловая энергия

     

    Продуценты (растения)

    кинетическая энергия

    солнечного света

    неколичественно

    потенциальная энергия органических соединений, синтезированных зелеными растениями

     

    количественно

    ¯

    тепловая энергия

     

    Консументы (травоядные, хищники)

    потенциальная энергия органических соединений, синтезированных зелеными растениями

    неколичественно

    потенциальная энергия собственной протоплазмы

    ¯

     

    количественно

     

    тепловая энергия

    Схема 3.1. Пути превращения энергии в экосистеме.

    Схема показывает, что несамопроизвольные процессы, протекающие в биологических системах, возможны только благодаря параллельно происходящему в них рассеянию энергии в самопроизвольных процессах. Таким образом, все типы экосистем регулируются теми же основными законами, которые управляют и неживыми системами. Но есть и различия. Еще в 1935 г. советский ученый Э.С.Бауэр в своей "Теоретической биологии" сформулировал три основные особенности живых систем:

    - способность к самопроизвольному, без воздействия окружающей среды, изменению состояния;

    - противодействие внешним силам, приводящее к изменению первоначального состояния окружающей среды;

    - постоянная работа против уравновешивания с окружающей средой.

    Первые две особенности встречаются и у других систем, а вот третья является отличительным признаком живых. Поэтому Бауэр назвал ее "всеобщим законом биологии", который имеет ясный термодинамический смысл - как в неживых системах устойчиво их равновесное состояние, так в живых устойчиво неравновесное. Э.Шредингер (1945 г.) тоже считал особенностью живых систем их неуравновешенность с окружающей средой, которая поддерживается непрерывным обменом открытой живой системы с окружающий средой едой, питьем, дыханием и т.д. Но обмен сам по себе ничего дать не может. Любой атом азота, кислорода, серы и т.п. также хорош, как и любой другой такого же рода. Может быть, целью обмена является поглощение энергии. Но ведь в зрелом организме содержание материи также постоянно, как и содержание энергии поэтому замена одного джоуля другим ничего не меняет. Более того, потребление пищи (энергии) взрослым организмом, как правило, значительно превышает потребности молодого, которому нужно интенсивно синтезировать собственную протоплазму. Значит, постоянный приток пищи необходим живым системам не только для накопления энергии на черный день, либо для построения организма, т.е. для синтеза органических соединений, характерных для данного вида, и главным образом не для этого. Чтобы разобраться в этой проблеме рассмотрим, а как ведут себя неживые неравновесные системы. Если неживую неуравновешенную с окружающей средой систему изолировать, то всякое движение в ней скоро прекратится. В результате трения, теплопроводности, химических реакций и других самопроизвольных процессов потенциалы выровняются, система в целом угаснет и превратится в инертную массу материи, находящуюся в состоянии термодинамического равновесия, то есть максимальной энтропии. (Хороший пример - растворение кристалла поваренной соли. На последнем примере удобно показать, что происходит с энтропией в самопроизвольных процессах. Кристалл - упорядоченная ионная структура, где каждый ион занимает определенное место в кристаллической решетке; при растворении эта структура нарушается, происходит ее разупорядочение, т.е. энтропия увеличивается).

    Таким образом, все, что происходит в природе, ведет к увеличению энтропии в той части мира, где это происходит, включая живые системы. Последние тоже непрерывно увеличивают свою энтропию, то есть производят положительную энтропию, и приближаются к опасному состоянию максимальной энтропии - смерти. Следовательно, неравновесное состояние живых систем поддерживается за счет извлечения ими из окружающей среды отрицательной энтропии - негоэнтропии. Назначение обмена - освободиться от производимой положительной энтропии и извлечь отрицательную. Но чем выше энтропия, тем больше беспорядок, и наоборот. Поэтому извлечение негоэнтропии есть "извлечение порядка", повышение упорядоченности системы, организма. Есть два различных механизма, производящих упорядоченные явления: статический, создающий порядок из беспорядка; и механизм, создающий порядок из порядка низшего уровня. Закон сохранения энергии ничего не дает для их объяснения. Видимо, его надо искать на основе второго закона. Известно, что высшие животные питаются хорошо упорядоченными органическими соединениями. Использовав упорядоченность этих продуктов, животные возвращают в окружающую среду вещества в очень деградировавшей, неупорядоченной форме, там они усваиваются растениями. Для последних же мощным средством выработки отрицательной энтропии является солнечный свет, с помощью которого в хлорофилле происходит повышение упорядоченности деградировавших веществ - фотосинтез, и цикл повторяется. Это единственный на Земле естественный процесс, в котором энтропия уменьшается - за счет непрерывного рассеяния солнечной энергии, которая достается экосистемам даром (см. схему 3.1).

    Таким образом, важнейшая термодинамическая характеристика организмов, экосистем и биосферы в целом - способность создавать и поддерживать высокую степень внутренней упорядоченности, то есть неуравновешенное состояние с низкой энтропией (с окружающей средой, но неустойчивое равновесие для самого индивида). Для поддержания внутренней упорядоченности в системе, находящейся при температуре выше абсолютного нуля, когда существует тепловое движение атомов и молекул, необходима постоянная работа по откачиванию "неупорядоченности". Эта работа предполагает постоянно действующий источник энергии и наличие хорошо развитых "диссипативных структур" у самой системы. Низкая энтропия достигается постоянным и эффективным рассеянием легко используемой концентрированной энергии (например, энергии света, горючего, пищи) и превращением ее в энергию, используемую с трудом (например, в тепловую). Дыхание высокоупорядоченной биомассы можно рассматривать как диссипативную структуру экосистемы. Это затрата энергии на поддержание жизнедеятельности.

    Итак, экосистемы и организмы представляют собой открытые неравновесные термодинамические системы, постоянно обменивающиеся с окружающей средой энергией и веществом, уменьшая этим энтропию внутри себя, но увеличивая энтропию вовне в согласии с законами термодинамики.
    1   2   3   4   5   6   7   8   9   ...   15


    написать администратору сайта