Конспект лекций по экологии для заочников. Лекция Краткая история и предмет экологии
Скачать 0.87 Mb.
|
Лекция 11. Осадочный цикл. Пути возвращения веществ в круговорот 1. Схема осадочного цикла. 2. Круговорот фосфора. 3. Круговорот второстепенных элементов. 4. Круговорот элементов питания. 5. Пути возвращения веществ в круговорот. 6. Коэффициент рециркуляции. Схема осадочного цикла. Большинство элементов и соединений более "привязано" к земле, чем азот, кислород, диоксид углерода и вода; и их круговороты входят в общий осадочный цикл, циркуляция в котором осуществляется путем эрозии, осадкообразования, горообразования и вулканической деятельности, а также биологического переноса. Сообществам биосферы доступны те химические элементы, которые по своей геохимической природе входят обычно в состав пород, обнаруживающихся на поверхности. Твердые вещества, переносимые по воздуху в виде пыли получили название "осадки"; они могут выпадать на землю с дождями или в виде сухих осадков. Кроме природных веществ (например, образующихся при извержении вулканов, в результате пыльных бурь или лесных пожаров) в состав таких "осадков" входят и вещества, образующиеся в результате деятельности человека. Их сравнительно немного по количеству, но они имеют большое биологическое значение либо из-за своего токсичного, радиоактивного воздействия, либо из-за способности блокировать поступающее солнечное излучение, что может охладить Землю и вызвать климатические изменения, противоположные тем, которые вызываются увеличением содержания парниковых газов. Прослеживается общая направленность осадочного цикла "вниз". В периоды минимальной геологический активности накопление растворенных или пригодных к использованию минеральных элементов питания происходит на низменностях и в океанах за счет возвышенных районов, хотя скорость этого процесса изменчива. В таких условиях особенно важное значение приобретают местные биологические механизмы возврата, благодаря которым потеря веществ "вниз" не превосходит их поступления из подстилающих пород, иными словами, чем дольше жизненно важные элементы будут оставаться в данной области, вновь и вновь используясь сменяющимися поколениями организмов, тем меньший приток нового материала потребуется извне. Источники осадочного материала для экосистем верховий невелики. К сожалению, человек часто нарушает этот гомеостаз, обычно не преднамеренно, а просто потому, что не понимает сложности "симбиоза" между живой и неживой материей, для возникновения которого и эволюции, возможно, понадобились тысячелетия. Пример такого "симбиоза" - приспособление речной биоты к передвижению веществ по спирали. Суть этого процесса заключается в том, что водные насекомые, рыбы и другие организмы собирают взвешенные и растворенные вещества, удерживают их, пропускают через пищевую цепь, а более подвижные виды в ходе своего жизненного цикла могут перемещать эти вещества вверх против течения или из реки на водосборный бассейн. Таким образом, действуя совместно, речные животные возвращают в круговорот элементы питания и сокращают их вынос в океан. В высокоширотных районах плотины, препятствующие ходу лососей на нерест, приводят к сокращению численности не только лосося, но и непроходной рыбы, дичи и даже к уменьшению продукции древесины. Удаление из леса больших масс древесины без возврата содержащихся в ней минеральных веществ в почву, что в норме происходит, когда упавшие деревья разлагаются, несомненно, также обедняет нагорья, где запас элементов питания и без того уменьшен веками геологического выщелачивания и эрозии. Нарушение таких биологических механизмов возвращения веществ в круговорот может обеднить целую экосистему на многие годы, так как восстановление обменного фонда минеральных веществ может занять много времени. В таком случае необходимо обдумать какие-то способы возвращения лимитирующих веществ, более эффективные, чем разведение рыбы или лесопосадки. Внезапно увеличивающийся из-за искусственного усиления эрозии приток элементов питания в низины не обязательно благоприятствует функционированию низинных экосистем, поскольку эти системы могут не успевать ассимилировать элементы питания, проходящие через систему к морю, где, попав в неосвещенные слои воды, они оказываются вне биологического круговорота, по крайней мере на время. С неменьшей вероятностью организмы будут просто задушены потоком ила, грязи и песка или могут быть отравлены токсичными веществами. Круговорот фосфора. Фосфор необходим живым организмам в довольно большом количестве, соответствующем примерно 0,1 необходимого количества азота, поскольку он представляет собой один из главных компонентов нуклеиновых кислот, клеточных мембран, систем переноса энергия, костной ткани и дентина. Фосфор имеет важное значение еще и по ряду других причин. Считают, что недостаток фосфора ограничивает продуктивность растений во многих водных местообитаниях и что поступление фосфора в реки и озера со сточными водами и с поверхностным стоком с удобряемых полей стимулирует повышение продуктивности водных местообитаний до нежелательного уровня. Кроме того, изучение круговорота фосфора облегчается тем, что экологи могут без труда измерять его концентрации в экосистеме и следить за его перемещением, используя один из его изотопов в качестве радиоактивной метки. Круговорот фосфора - пример достаточно простого по структуре осадочного цикла. Фосфор циркулирует, постепенно переходя из органических соединений в фосфаты, которые снова могут использоваться растениями. Растения ассимилируют фосфор в виде фосфат-иона (PO43-) непосредственно из почвы или воды; у животных содержащийся в пище избыточный органический фосфор выводится из организма с мочой в виде фосфатов; некоторые группы бактерий аналогичным образом превращают содержащийся в детрите органический фосфор в фосфат. Несмотря на относительную простоту круговорота фосфора, на доступность этого элемента для растений оказывают влияние многие факторы среды. При обилии растворенного кислорода фосфор легко образует нерастворимые соединения, которые осаждаются, тем самым изымая фосфор из фонда доступных биогенных элементов. При длительном сохранении таких условий накапливается осадочный фосфор и в конечном счете образуются фосфатные породы, откуда фосфор возвращается в активные фонды экосистемы очень медленно. Кислотность также оказывает влияние на доступность фосфора для растений; фосфаты натрия и кальция относительно плохо растворимы в воде. В щелочной среде фосфат-ионы (PO43-) легко соединяются с натрием или кальцием, образуя нерастворимые соединения. Но в кислой среде фосфат превращается в хорошо растворимую фосфорную кислоту. При промежуточных уровнях кислотности фосфат-ион образует соединения, обладающие промежуточной растворимостью, как это показано на схеме 11.1: Схема 11.1.
В лабораторных условиях кислая среда повышает растворимость фосфатов; в условиях экосистемы высокая кислотность снижает доступность фосфора вследствие его реакций с другими минеральными веществами. В кислых средах алюминий, железо и марганец становятся растворимыми и реакционноспособными и образуют химические комплексы, связывающие фосфор и изымающие его таким образом из активного фонда биогенных элементов; именно так происходит извлечение фосфора из почвы в торфяных болотах и в холодных влажных областях, что обуславливает низкую продуктивность этих местообитаний. Фосфор наиболее легкодоступен в узком диапазоне кислотности, в слабокислой среде. Фосфор поступает в атмосферу в единственной форме - в виде пыли. Поэтому в круговорот фосфора в экосистеме вовлечены только почва и вода. Резервуаром фосфора служит не атмосфера, а горные породы и другие отложения, образовавшиеся в прошлые геологические эпохи. Породы эти постепенно подвергаются эрозии, высвобождая фосфаты в экосистемы, но большое количество фосфатов попадает в море, отлагаясь частично в мелководных осадках, а частично теряясь в глубоководных отложениях. Механизмы возвращения фосфора в круговорот, видимо, не достаточно эффективны и не возмещают потерь. В некоторых районах земного шара сейчас не происходит сколько-нибудь значительного поднятия отложений, а перенос на сушу рыбы не компенсирует поток фосфора с суши на море. В прошлом морские птицы, по-видимому, играли важную роль в возвращении фосфора в круговорот. Этот перенос фосфора и других веществ из моря на сушу продолжается и сейчас, но, видимо, не столь интенсивно, как в прошлом. К сожалению, деятельность человека ведет к усиленной потере фосфора, что делает его круговорот менее замкнутым. Хотя человек вылавливает много морской рыбы, полагают, что в год этим способом на сушу возвращается 60000 т элементарного фосфора. Добывается же на удобрения ежегодно 1-2 млн.т. фосфорсодержащих пород; большая часть этого фосфора смывается и выключается из круговорота. Экологи уделяют большое внимание круговороту фосфора, считая, что его важность сильно возрастет в будущем, так как из всех макроэлементов, т.е. элементов, необходимых для всего живого в больших количествах, фосфор - один из самых редких в смысле его относительного обилия в доступных резервуарах на поверхности Земли. Круговорот второстепенных элементов. Второстепенные элементы, подобно жизненно важным, нередко мигрируют между организмами и средой, хотя и не представляют какой-либо известной ценности для организмов. Большинство из них участвуют в общем осадочном цикле, а некоторые поступают в атмосферу. Многие элементы, не относящиеся к биогенным, концентрируются в определенных тканях иногда благодаря химическому сходству с какими-то жизненно важными элементами, хотя такие их концентрации могут оказаться опасными. В настоящее время экологу приходится изучать круговорот целого ряда таких второстепенных элементов (тяжелых металлов, радиоактивных элементов), главным образом потому, что они связаны с деятельностью человека. Большинство второстепенных элементов в концентрациях, обычных для многих природных экосистем, почти не оказывает влияния на организмы, возможно потому, что организмы к ним адаптировались. Таким образом, миграции этих элементов мало интересовали бы нас, если бы в окружающую среду не слишком часто попадали побочные продукты горнодобывающей промышленности, различных производств химической промышленности и современного сельского хозяйства, продукты, содержащие высокие концентрации тяжелых металлов, ядовитые органические соединения и другие потенциально опасные вещества. Поэтому в настоящее время важны круговороты почти всех элементов. Даже очень редкий элемент, если он выносится в среду в форме высокотоксичного соединения металла или радиоактивного изотопа, может приобрести важное биологическое значение, так как даже небольшое (с геохимической точки зрения) количество такого вещества способно оказывать выраженный биологический эффект. Круговорот элементов питания. Характер круговорота элементов питания в северном умеренном поясе и в тропиках, особенно влажных, различается по ряду важнейших особенностей. В холодных районах большая часть органических веществ и доступных элементов питания все время находится в почве или в отложениях, в тропиках же гораздо больший процент этих веществ содержится в биомассе и циркулирует в пределах органической части экосистемы, чему способствуют различные биологические адаптации, в том числе мутуалистические отношения между микроорганизмами и растениями, удерживающие элементы питания. Когда вырубают лес в умеренном поясе, в почве остаются элементы питания, сохраняется ее структура, и с площади, освобожденной от леса, в течение многих лет "обычным" способом можно получать урожай, один или несколько раз в год проводя вспашку, высевая однолетние культуры и внося неорганические удобрения. Зимой низкие температуры способствуют удержанию в почве элементов питания и частично уничтожают вредителей и паразитов. Напротив, во влажных тропиках вырубка леса отнимает у земли способность удерживать элементы питания и поддерживать их циркуляцию, так как здесь круглый год сохраняются высокие температуры и повторяются периоды выщелачивающих дождей. Очень часто продуктивность культур быстро падает, и земля забрасывается. Итак, на севере и круговороты элементов питания, и использование экологических сообществ в большей степени зависят от физических процессов, а на юге - от биологических. Бедная элементами питания тропическая экосистема в естественных условиях способна поддерживать высокую продуктивность благодаря разнообразным механизмам, удерживающим эти элементы и обеспечивающим "прямой круговорот " от растения к растению, в значительной мере минуя почву. Разрушение этих механизмов привозит к снижению продуктивности системы и ее гибели. Пути возвращения веществ в круговорот. В связи с вышесказанным, полезно рассмотреть предмет биогеохимии с точки зрения путей возврата веществ в круговорот, поскольку такая рециркуляция воды и элементов питания - жизненно важный процесс в экосистемах, приобретающий большое значение и для человека. Можно выделить пять основных путей возврата в круговорот: 1. Через микробное разложение в детритный комплекс. 2. Через экскременты животных. 3. Прямая передача от растения к растению микроорганизмами-симбионтами. 4. Физическими процессами, в том числе прямого действия солнечной энергии. 5. За счет энергии топлива, например при промышленной фиксации азота. Согласно классическим представлениям основными агентами регенерации элементов питания считались бактерии и грибы; действительно, в почвах умеренной зоны, где процесс регенерации лучше всего изучен, преобладает путь 1. Там, где мелкие растения, например, трава или фитопланктон, активно выедаются животными, важную роль может играть путь возврата через экскременты животных - путь 2. Непосредственный возврат симбиотическими организмами (путь 3), особенно важен в алиготрофных системах с низким содержанием элементов питания и характерен, например для тропиков, где около 40% элементов питания сосредоточено в наземной части экосистемы. Вода возвращается в круговорот в результате прямого воздействия солнечной энергии; и в результате процессов выветривания и эрозии, связанных с потоками воды, вниз по течению элементы осадочных пород выносятся из абиотического резервуара и попадают в биотические циклы (путь 4). Человек вмешивается в ход циклов, когда он затрачивает энергию топлива на опреснение морской воды, производство удобрений или на получение из отходов различных металлов (путь 5). Наконец, следует отметить, что элементы питания могут высвобождаться из остатков растений и животных и из фекальных комочков даже без участия микроорганизмов, что доказано помещением этих материалов в стерильные условия. Этот способ возврата в круговорот можно назвать автолизом - саморастворением. В водных или влажных местообитаниях, особенно если погибшие растения и животные или неживые частицы малы (т.е. велико отношение их поверхности к объему), еще до начала разложения микроорганизмами может высвободиться от 25 до 75% элементов питания. Автолиз можно считать шестым важным путем возврата, не требующим затрат метаболической энергии. Возврат в круговорот - это не "безвозмездная" услуга, на нее почти всегда затачивается энергия. Если источниками энергии для возвращения служат солнечный свет и органическое вещество, то людям не приходится непосредственно затрачивать дорогостоящие виды топлива. Если не нарушать природные механизмы рециркуляции и не отравлять их, то они в основном реализуют возврат в круговорот воды и элементов питания. Повторное же использование промышленных материалов - совсем другое дело, оно требует немалых затрат топлива и денежных средств, но когда запасы этих материалов становятся ограниченными, другого выхода нет. Коэффициент рециркуляции. Размеры возврата веществ в круговорот в разных экосистемах можно сравнить, рассчитывая коэффициент рециркуляции - соотношение суммарных количеств веществ, циркулирующих между разными блоками экосистемы и общим потоком вещества через всю систему: CI =TSTc/ TST Здесь CI - коэффициент рециркуляции (возврата); TSTc - рециркулируемая доля потока вещества через систему и TST - общий поток вещества через систему. Последняя величина определяется как сумма всех поступлений вещества минус изменение его запасов в системе (если это изменение отрицательно), или как суммарный выход вещества плюс изменение его запасов (если оно положительно). Для расчетов потоков и коэффициентов рециркуляция применяют матричный анализ. Коэффициент рециркуляции связан с поступлениями каждого элемента извне, его подвижностью и потребностями в нем биоты. Коэффициент возврата бывает низким (0-10%) либо на ранних стадиях развития экосистемы, либо при изобилии ресурсов, либо в случае несущественных для жизни элементов. СI высок (> 50%) на зрелых стадиях развития экосистемы, при бедности ресурсов и в случае незаменимых для жизни элементов. Коэффициент рециркуляции не говорит о ее скорости, т.е. скорости, с которой вещества движутся по кругу. Эта скорость значительно выше в тропическом лесу или в теплом океане, чем в тундре или в холодном озере, но удовлетворительные способы ее количественного измерения пока не разработаны. Повторное использование бумаги. Бумага - хороший пример рециркуляции в промышленно-городских системах напоминающий рециркуляцию важных элементов в природных системах. Рециркуляция в естественных экосистемах (коэффициент рециркуляции) возрастает при увеличении разнообразия и усложнении биотических компонентов экосистем, или по мере обеднения ресурсов в среде на входе, или по мера накопления в среде на выходе отходов, опасных для жизни в экосистеме, или в результате взаимодействия этих трех процессов вместе. Пока мы имеем сколько угодно деревьев, бумажных фабрик и неиспользуемой земли для свалки ненужной бумаги, у нас нет стимулов к тому, чтобы затрачивать средства на технику и энергию, необходимые для повторного использования части бумаги, протекающей через город. По мере того, как в пригородах возрастает плотность населения, поднимается стоимость земли, сохранять свалки и места сброса отходов становится все труднее. Среда на входе тоже может оказывать давление, если запасы природной древесины или продукции фабрик неспособны удовлетворить спрос на бумагу. В обоих случаях оказывается "выгодно" подумать о вторичном использовании. Чтобы оно было успешным, должен существовать рынок сбыта для старых газет и картона, например фабрика по переработке макулатуры. Такая фабрика соответствует механизму экономии энергии путем рециркуляции или диссипативной структуре в природной экосистеме. Другими словами, ко всей системе приходится добавлять новое, эмерджентное свойство, если мы хотим, чтобы экономия, основанная на рециркуляции, была эффективной. |