Конспект лекций по экологии для заочников. Лекция Краткая история и предмет экологии
Скачать 0.87 Mb.
|
Типы катаболизма и организмов-разрушителей. Катаболизм (разложение) органических остатков - длительный и сложный процесс, контролирующий несколько важных функций экосистемы. В результате этого процесса: 1) возвращаются в круговорот элементы питания, находящиеся в мертвом органическом веществе; 2) производится пища для последовательного ряда организмов в детритной пищевой цепи; 3) производятся вторичные метаболиты ингибирующего, стимулирующего и часто регулирующего действия; 4) образуются хелатные комплексы с элементами питания; 5) преобразуются инертные вещества земной поверхности, что приводит к образованию такого уникального природного тела, каким является почва; 6) поддерживается состав атмосферы, способствующий жизни крупных аэробов, таких, как человек. Если рассматривать разложение в широком смысле слова, как "любое биологическое окисление, дающее энергию", то с учетом потребности в кислороде можно выделить несколько типов этого процесса, приблизительно аналогичных типам фотосинтеза: 1. Аэробное дыхание - окислителем (акцептором электронов) служит газообразный молекулярный кислород (тип 1); 2. Анаэробное дыхание протекает без участия газообразного кислорода. Акцептором электронов служит не кислород, а какое-либо другое неорганическое (тип 2) или органическое (тип 3) соединение; 3. Брожение тоже анаэробный процесс, но окисляемое органическое соединение само служит акцептором электронов (тип 4). Аэробное дыхание (тип 1) - процесс обратный "нормальному фотосинтезу"; в этом процессе синтезированное органическое вещество {СН2O} вновь разлагается с образованием СО2 и H2О и с высвобождением энергии. Все высшие растения и животные и большинство микроорганизмов получают энергию для поддержания жизнедеятельности и построения клеток именно с помощью этого процесса. В итоге завершенного дыхания образуются СО2, вода и вещества клетки; однако процесс может идти не до конца, и в результате такого незавершенного дыхания образуются органические соединения, еще содержащие некоторое количество энергии, которая в дальнейшем может быть использована другими организмами (процессы 2 и 3). Бескислородное дыхание служит основой жизнедеятельности главным образом у сапрофагов (бактерии, дрожжи, плесневые грибы, простейшие), хотя, как звено метаболизма, оно может встречаться и в некоторых тканях высших животных. Хороший пример облигатных анаэробов - метановые бактерии, которые разлагают органические соединения, образуя метан путем восстановления, либо органического углерода, либо углерода карбонатов. Таким образом, дыхание у них может происходить по типам 2 и 3. К общеизвестным организмам, использующим брожение (тип 4), относятся дрожжи; они имеют большую практическую ценность для человека, но, кроме того, в изобилии встречаются в почве, где играют ключевую роль в разложении растительных остатков. Многие группы бактерий (например факультативные анаэробы) способны и к аэробному и к анаэробному дыханию. Однако конечные продукты этих двух процессов различны, и количество высвобождающейся энергии при анаэробном дыхании значительно меньше. Общий баланс процессов продукции и разложения Каждый год фотосинтезирующими организмами на Земле создается около 100 млрд. т. органического вещества. За этот промежуток времени приблизительно такое же количество живого вещества окисляется, превращаясь в СО2 и воду в результате дыхания организмов. Однако этот баланс неточен. Для биосферы в целом важнейшее значение имеет отставание процесса полной гетеротрофной утилизации и разложения продуктов автотрофного метаболизма от процесса их создания, поскольку именно отставание обусловило накопление в недрах горючих ископаемых, а в атмосфере - кислорода. В этой связи крайнюю озабоченность вызывает деятельность человека, который хотя и ненамеренно, но очень значительно ускоряет процессы разложения. Лекция 10. Круговороты азота и серы 1. Круговорот азота. 2. Круговорот серы. Круговорот азота. Круговорот азота - пример очень сложного и хорошо забуференного круговорота газообразных веществ. Воздух, на 78% состоящий из азота, представляет собой крупнейший "резервуар" и одновременно "предохранительный клапан" системы. Азот постоянно поступает в атмосферу благодаря деятельности денитрифицирующих бактерий и постоянно возвращается в круговорот в результате деятельности азотфиксирующих бактерий или водорослей (биологическая фиксация азота), а также действию физических процессов (например, молний), в которых происходит фиксация азота. Путь прохождения азота через экосистему отличается от пути углерода и кислорода в нескольких важных аспектах. Во-первых, большинство организмов не могут ассимилировать азот из огромного его фонда (3,85·1021 г N2), имеющегося в атмосфере. Во-вторых, азот не принимает непосредственного участия в высвобождении химической энергии при дыхании: главная его роль сводится к тому, что он входит в состав белков и нуклеиновых кислот, которые создают структуру биологических систем и регулируют их функционирование. В-третьих, биологическое разложение азотсодержащих органических соединений до неорганических форм слагается из нескольких стадий, и некоторые из этих стадий могут осуществляться только специализированными бактериями. В-четвертых, большая часть биохимических превращений, участвующих в разложении азотсодержащих соединений, происходит в почве, где доступность азота растениям облегчается растворимостью его неорганических соединений. Содержание азота в живых тканях составляет чуть больше 3 % содержания его в активных фондах экосистемы; остальной азот распределен между детритом и нитратами, содержащимися в почве и океане. Кроме того, относительно небольшие количества азота находятся на промежуточных стадиях разложения белка - в виде аммиака и нитритов (табл. 10.1). Растения ежегодно ассимилируют 86·1014 г азота - менее 1 % активного фонда, поэтому общее время круговорота азота превышает 100 лет. Таблица 10.1. Распределение азота между активными фондами и годовые скорости переноса (все фонды содержат в сумме около 1018 г азота)
При круговороте азота происходит поэтапный распад органических соединений, в котором участвует много разных организмов и в результате которого азот в конечном счете переходит в нитратную форму. Из всех доступных растениям форм, в каких азот содержится в почве, наиболее желательной является аммиак (NН3) или ион аммония (NН4+), потому что их превращение в органические соединения требует минимальных химических перестроек. Аммиак, однако, не может служить источником азота в почве потому, что в высоких концентрациях он токсичен для растительных тканей, и также потому, что он не удерживается в почве. Аммиак легко растворяется в воде и быстро вымывается из почвы. В кислых почвах аммиак превращается в ион аммония. Этот положительно заряженный ион в результате электростатического взаимодействия может присоединяться к поверхности глинисто-гумусовой мицеллы, однако он легко вытесняется в кислых почвах ионами водорода и тем самым тоже довольно легко вымывается водой. Некоторые глинистые минералы просто адсорбируют ионы аммония, включая их в свою кристаллическую решетку, и притом так прочно, что эти ионы не поддаются вымыванию и тем самым становятся недоступными для растений. Тот аммиак, который избежал вымывания из почвы, подвергается действию специализированных бактерий, извлекающих энергию путем окисления азота аммиака до нитритов (NО2-) и нитратов (NO3-). Отрицательно заряженные нитрит- и нитрат- ионы совершенно не связываются с частицами глины, а поэтому легко вымываются. Образовавшиеся в почве нитраты быстро ассимилируются корнями растений. В наземных экосистемах главные запасы азота представляет азот, входящий в состав органического детрита. В водных экосистемах азот содержится главным образом в виде растворенных нитратов. Биохимические превращения азотсодержащих соединений чрезвычайно разнообразны, потому что азот может соединяться с другими элементами несколькими различными способами. Наиболее важные процессы в круговороте азота - это распад органических азотсодержащих соединений в результате аммонификации и нитрификации, восстановление нитратов и нитритов до молекулярного азота (N2) в результате денитрификации и его высвобождение в атмосферу, а также процесс биологической ассимиляции атмосферного азота путем его фиксации. В процессе денитрификации азот удаляется из активных фондов почвы и поверхностных слоев воды и попадает в атмосферу; в результате же процесса фиксации атмосферный азот возвращается в активный круговорот, происходящий в экосистеме. Эти процессы представляются второстепенными по сравнению с общим круговоротом азота в экосистеме, однако в тех местах, где содержание азота в почве недостаточно для нормального роста растений, фиксация азота нередко приобретает важное значение. В органических соединениях азот обычно представлен амино- или какой-либо родственной группой, входящей в состав той или иной органической молекулы. У животных выведение из организма избыточного азота происходит путем отщепления аминов от органических соединений и выделения их в сравнительно неизменной форме, главным образом в виде аммиака (NН3) или мочевины СО(NH2)2. Почвенные микроорганизмы легко превращают мочевину в аммиак путем гидролиза: СО(NH2)2 + H2O 2 (NН3) + CO2 Эта реакция, однако, не сопровождается высвобождением энергии, которая могла бы использоваться для выполнения каких-либо биологических функций. Некоторые специализированные, и повсеместно встречающиеся бактерии могут высвобождать химическую энергию, содержащуюся в аминогруппе, в результате ряда реакций нитрификации, для которых необходим кислород. Nitrosomonas превращает ион аммония в нитрит; Nitrobacter завершает процесс нитрицикации, окисляя нитрит до нитрата. Нитрификация представляет собой решающий этап в круговороте азота, так как она в конечном счете определяет скорость, с которой азот переходит в форму, доступную зеленым растениям, и тем самым оказывает влияние на продуктивность местообитания. Любые почвенные условия, подавляющие активность бактерий, - высокая кислотность и плохая аэрация почвы, низкая температура и недостаток влаги - подавляют также и нитрификацию. Медленное поступление в почву биогенных элементов, характерное для холодных и засушливых условий, может, в дополнение к непосредственному воздействию этих факторов на фотосинтез, еще больше снижать продуктивность растений. Кроме того, если содержание азота в органическом детрите невелико по сравнению с содержанием в нем углерода, то бактерии расходуют весь этот азот на построение своих клеток, а не используют его в качестве субстрата для метаболизма. В результате азот оказывается связанным в биомассе бактерий, вместо того, чтобы стать доступным растениям. Денитрификация, в процессе которой нитраты превращаются в азот, происходит в несколько этапов: NO3- NO2- N2O N2, причем на каждом из этих этапов выделяется кислород. (Бактерия Pseudomonas добывает с помощью этого процесса необходимый для дыхания кислород при отсутствии в почве свободного кислорода). Оксид азота (N2O) и молекулярный азот (N2 ) выделяются в атмосферу и, тем самым, исключаются из фондов активного азота. Денитрификация может происходить также чисто химическим путем, без участия микроорганизмов. Например, в кислых почвах происходит реакция: СО(NH2)2 + 2HNO3 CO2 + 2N2 + 3H2O. Следует обсудить энергетические взаимоотношения между компонентами круговорота азота, необходимые для функционирования этого круговорота. Ступенчатый процесс разложения белков до нитратов сам служит источником энергии для организмов, осуществляющих это разложение, а обратный процесс требует других источников энергии, таких, как органическое вещество или солнечный свет. Фиксация азота требует особенно больших затрат энергии, так как много энергии идет на разрыв тройной связи в молекуле азота N2, чтобы с добавлением водорода из воды превратить ее в две молекулы аммиака (NН3). Бактерии в клубеньках бобовых расходуют на биофиксацию 1 г азота около 10 г глюкозы (примерно 40 ккал), полученной растением в фотосинтезе, то есть эффективность составляет 10%. Для фиксации азота необходимы специализированные биохимические механизмы, отсутствующие, по-видимому, у высших растений; лишь прокариоты, безъядерные, самые примитивные организмы, такие как сине-зеленые водоросли, бактерия Azotobacter и др., могут превращать биологически бесполезный газообразный азот в формы, необходимые для построения и поддержания живой протоплазмы. Когда эти микроорганизмы образуют взаимно выгодные ассоциации с высшими растениями, фиксация азота значительно усиливается. Растение предоставляет бактериями подходящее местообитание (т.е. корневые клубеньки, листья), защищает от излишка кислорода, который мешает фиксации, и поставляет им необходимую высококачественную энергию - глюкозу. За это растение получает легкоусваемый фиксированный азот. Около 80% азота, который, по оценкам, усваивается ежегодно глобальным биотическим сообществом, возвращается в круговорот с суши и из воды, и лишь около 20% необходимого количества - это "новый азот", поступающий из атмосферы с дождем и в результате фиксации. Напротив, из азота, поступившего на поля с удобрениями, очень небольшая часть используется повторно, большая же часть теряется с собираемым урожаем, в результате выщелачивания и денитрификации. В заключение можно отметить, что благодаря механизмам обратной связи, обеспечивающим саморегуляцию, и хорошей забуференности круговорот азота относительно совершенен, если рассматривать его в масштабе крупных экосистем или всей биосферы. Часть азота из густонаселенных областей суши, пресных вод и мелководных морей уходит в глубоководные океанические отложения и таким образом выключается из круговорота, по крайней мере на время (возможно, на несколько миллионов лет). Эта потеря компенсируется поступлением азота в воздух с вулканическими и промышленными газами. Но в последние годы даже круговорот азота испытывает осложнения, вызываемые антропогенным загрязнением воздуха. Круговорот серы. Круговорот серы удачно иллюстрирует связь между воздухом, водой и земной корой, так как сера активно циркулирует в каждом из этих резервуаров и между ними. Основной доступной формой серы, которая восстанавливается автотрофами и включается в аминокислоты и, соответственно, в белки, является сульфат (SO42). Первичная продукция обеспечивает включение сульфата в органическое вещество, а экскреция животными служит путем возвращения сульфатов в круговорот. Обмен серы между фондом доступного сульфата и фондом сульфидов железа, находящимися глубоко в почве и в осадках происходит благодаря процессам окисления и восстановления. Перечислим основные черты биогеохимического круговорота серы: 1. Обширный резервный фонд в почве и отложениях, и меньший - в атмосфере. 2. Центральную роль в быстро обменивающемся фонде играют специализированные микроорганизмы, между которыми существует разделение труда - каждый вид выполняет определенную реакцию окисления или восстановления: H2S S SO42- - бесцветные, зеленые и пурпурные серобактерии; SO42- H2S - (анаэробное восстановление сульфата) - Desulfovibrio; H2S SO42- - (аэробное окисление сульфида) - тиобациллы; органическая сера SO42- и H2S - аэробные и анаэробные гетеротрофные микроорганизмы соответственно. 3. Микробная регенерация сульфидов из глубоководных отложений, в результате которой вверх движется газовая фаза (Н2S). 4. Взаимодействие геохимических и метеорологических процессов (эрозия, осадкообразование, выщелачивание, дождь, абсорбция, десорбция и т.д.) с биологическими процессами продукции и разложения. 5. Взаимодействие воздуха, воды и почвы в регуляции круговорота в глобальном масштабе. Экосистеме требуется не много серы. Она редко бывает фактором, лимитирующим рост растений и животных. Тем не менее круговорот серы является ключевым в общем процессе продукции и разложения биомассы, ибо он способен регулировать другие круговороты биогенных веществ, в частности фосфора. Когда в осадках образуются сульфиды железа, фосфор из нерастворимой переводится в растворимую форму и становится доступным для организмов. Этот факт несомненно следует учитывать при обсуждении антропогенного воздействия на круговорот серы. |