Курс лекции по геодезии. Курс лекции по геодезии Акрам, руси. Лекция по дисциплине Геодезия Лекция Определение геодезии как науки и ее задачи. История геодезии
Скачать 2.09 Mb.
|
Классификация теодолитов В настоящее время отечественными заводами в соответствии с действующим ГОСТ 10529 – 96 изготавливаются теодолиты четырех типов: Т05, Т1, Т2, Т5 и Т30. Для обозначения модели теодолита используется буква "Т" и цифры, указывающие угловые секунды средней квадратической ошибки однократного измерения горизонтального угла. По точности теодолиты подразделяются на три группы: технические Т30, предназначенные для измерения углов со средними квадратическими ошибками до ±30"; точные Т2 и Т5 – до ±2" и ±5"; высокоточные Т05 и Т1 – до ±1". ГОСТом 10529 – 86 предусмотрена модификация точных и технических теодолитов. Так, например, теодолит Т5 должен изготовляться в двух вариантах: с цилиндрическим уровнем при алидаде вертикального круга и с компенсатором, заменяющим этот уровень. Теодолит с компенсатором при вертикальном круге должен обозначаться дополнительно буквой "К", например обозначается Т5К Технические и эксплуатационные характеристики теодолитов постоянно улучшаются. Шифр обновленных моделей начинается с цифры, указывающей на соответствующее поколение теодолитов: 2Т2, 2Т5К, 3Т5КП, 3Т30, 3Т2, 4Т30П и т.д. По конструкции предусмотренной ГОСТ 10529 – 96 типы теодолитов делятся на повторительные и не повторительные. У повторительных теодолитов лимб имеет закрепительный и наводящий винты и может вращаться независимо от вращения алидады. Неповторительная система осей предусмотрена у высокоточных теодолитов. Отсчетные приспособления Отсчетные приспособления служат для отсчитывания делений лимба и оценки их долей. Они делятся на штриховые (теодолит Т30) и шкаловые (2Т30, Т5, 2Т5) микроскопы (рис.42) и микрометры (теодолит Т2). Угловая цена деления лимба называется ценой деления лимба. Рис.42. Поле зрения отсчетных устройств: штрихового микроскопа с отсчетами по вертикальному кругу – 358° 48' , по горизонтальному – 70° 04' (а); шкалового микроскопа с отсчетами: по вертикальному кругу – 1° 11,5', по горизонтальному – 18° 22' (б); по вертикальному кругу – -0° 46,5' по горизонтальному – 95° 47' (в). В штриховом микроскопе теодолита Т30 в середине поля зрения виден штрих, относительно которого осуществляется отсчет по лимбу (рис. 42, а). Перед отсчетом по лимбу необходимо определить цену деления лимба. В теодолите Т30 цена деления лимба составляет 10 угловых минут, т.к. градус разделен на шесть частей. Число минут оценивается на глаз в десятых долях цены деления лимба. Точность отсчета составляет 1'. В шкаловом микроскопе теодолита 2Т30 в поле зрения видна шкала, размер которой соответствует цене деления лимба (рис. 42, б, в). Для теодолита технической точности размер шкалы и цена деления лимба равны 60'. Шкала разделена на двенадцать частей и цена ее деления составляет 5 угловых минут. Если перед числом градусов знака минус нет, отсчет производится по шкале от 0 до 6 в направлении слева направо (рис.42, б). Если перед числом градусов стоит знак минус, в этом случае минуты отсчитываются по шкале вертикального круга, где перед цифрами от 0 до 6 стоит знак минус в направлении справа налево (рис.42, в). Десятые доли цены деления шкалы берутся на глаз с точностью до 30''. Уровни служат для приведения отдельных осей и плоскостей геодезических приборов в горизонтальное или вертикальное положение. Они состоят из ампулы, оправы и регулировочного приспособления. В зависимости от формы ампулы уровни бывают цилиндрические и круглые. Ампулу цилиндрического уровня, внутренняя поверхность которой отшлифована по дуге круга радиуса R, заполняют нагретым серным эфиром или спиртом и запаивают. Свободную от жидкости часть ампулы, заполненную парами жидкости, называют пузырьком уровня. На внешней поверхности рабочей части такой ампулы через 2 мм нанесены штрихи. Точка, соответствующая средней части центрального деления ампулы, называется нуль-пунктом уровня. Рис. 43. Цилиндрический уровень Прямая uu1 – касательная к внутренней поверхности ампулы в нуль-пункту О, называется осью цилиндрического уровня (рис. 43). При любом положении ампулы уровня его пузырек будет всегда занимать наивысшее положение, а касательная, проведенная к самой высокой точке О' пузырька, будет горизонтальна. Если совместить точки О и О', то ось цилиндрического уровня тоже займет горизонтальное положение. Центральный угол τ соответствующий одному делению ампулы, определяет чувствительность уровня, т.е. способность пузырька быстро и точно занимать в ампуле наивысшее положение. Величину этого угла называют ценой деления уровня и рассчитывают по формуле τ = ρ'' ∙ l / R , где R – радиус внутренней поверхности ампулы, мм; ρ'' – величина радиана в секундах; l – длина деления ампулы, мм. Чем больше R, тем меньше цена одного деления и тем точнее уровень. У точных теодолитов цена деления уровня колеблется в пределах 15 – 40" на 2 мм, а у технических – в пределах 45 – 60" на 2 мм. Зрительные трубы и их установка Для наблюдения удаленных предметов в теодолите используют зрительную трубу. Геодезические приборы, как правило, снабжают трубой Кеплера, которая дает увеличенное перевернутое изображение. Такие трубы называют астрономическими. Оптика простейших зрительных труб состоит из двух собирательных линз: объектива (1), направленного на предмет, и окуляра (2). Изображение всегда получается при прохождении лучей через объектив, действительным, обратным и уменьшенным. Чтобы увеличить его, в трубу вводят окуляр, действующий как лупа. Получаем мнимое, увеличенное изображение. Рис. 44. Зрительная труба: 1 – объектив; 2 – окуляр; 3 – фокусирующая линза; 4 – сетка нитей; 5 – кремальерный винт (кольцо) Так как при визировании на разные расстояния изображение будет перемещаться, то для получения ясного изображения необходимо, чтобы окуляр мог перемещаться относительно объектива вдоль оси трубы. Новейшие геодезические трубы снабжаются трубой постоянной длины, в которой объектив и сетка нитей закреплена в одной оправе. Фокусирование производится при помощи фокусирующей линзы (3) – рассеивающего стекла, перемещающегося в трубе между объективом и сеткой нити (4) при вращении особого кремальерного винта или кольца (5), охватывающего зрительную трубу около её окуляра. Простые зрительные трубы обладают двумя существенными недостатками: сферической и хроматической аберрациями. Явление сферической аберрации вызывается тем, что лучи света после их преломления в стекле не собираются в одной и той же точке, отчего изображения предметов получаются неясными и расплывчатыми. Сферической аберрации особенно подвержены лучи, падающие на края линзы. Бесцветные лучи света, преломляясь в стекле, разлагаются на цвета и окрашивают края изображения в цвета радуги. Это явление называется хроматической аберрацией. Для ослабления сферической аберрации берут линзы разной кривизны, а для устранения хроматической аберрации линзы устанавливают на некотором расстоянии друг от друга. Полная установка зрительной трубы для наблюдения складывается из установки её по глазу и по предмету. Сначала устанавливают окуляр по глазу, для чего направляют трубу на какой – либо светлый фон и перемещают диоптрийное кольцо так, чтобы нити сетки были видны резко очерченными. Затем наводят трубу на предмет и добиваются четкого его изображения кремальерным винтом, т.е. фокусируют. После этого устраняют параллакс сетки нитей. Точка пересечения нитей не должна сходить с наблюдаемой точки при передвижении глаза относительно окуляра. Если она сходит с наблюдаемой точки, то такое явление называется параллаксом. Он происходит от несовпадения плоскости изображения предмета с плоскостью сетки нитей и устраняется небольшим поворотом кремальеры. При оценке качества зрительной трубы существенное значение имеют следующие показатели: увеличение, поле зрения и яркость трубы. Увеличение трубы есть отношение угла, под которым в окуляре видно изображение предмета, к углу, под которым этот же предмет наблюдают невооруженным глазом. Допустим, что глаз рассматривает изображение предмета в трубе из центра окуляра О1 под углом β, а сам предмет из центра объектива О под углом α. Рис. 45. Увеличение зрительной трубы При наблюдении на большие расстояния можно считать, что изображение предмета в трубе удалено как от объектива, так и от окуляра на величину их фокусных расстояний, т.е. Оc = foб, аcО1 = foк. Из треугольников a0O1b0 и a0Оb0 имеем Вследствие малости углов α и β можно отношение тангенсов заменить отношением углов, т.е. Следовательно, можно сказать, что увеличение трубы есть отношение фокусного расстояния объектива к фокусному расстоянию окуляра. Увеличение зрительных труб технических теодолитов Т30 равно 20x, точных теодолитов Т5 колеблется в пределах 25 – 30x. Поле зрения – это пространство, которое можно видеть через трубу при неподвижном её положении Из этой формулы видно, что чем больше увеличение, тем меньше поле зрения. Поэтому для быстрого наведения на предмет наблюдения зрительную трубу снабжают визирной трубочкой или оптическим прицелом. Яркость изображения трубы – это то количество света, которое глаз получает от одного квадратного миллиметра площади видимого изображения за единицу времени. Яркость изображения прямо пропорциональна квадрату отверстия объектива и обратно пропорциональна квадрату увеличения трубы. В связи с этим при геодезических работах не следует применять приборы с трубами большого увеличения, так как они имеют небольшую яркость изображения. Предельное расстояние от теодолита до предмета Невооруженный глаз может различить две удаленные точки в том случае, если они видны под углом зрения около одной минуты; при уменьшении угла зрения точки перестают различаться и сливаются в одну. Поэтому ошибка визирования невооруженным глазом можно полагать равной 60". Данное значение угла зрения называют критическим. При рассматривании изображения в зрительную трубу погрешность визирования уменьшается пропорционально увеличению трубы и принимается ± 60''/ Г Если увеличение трубы известно, можно рассчитать предельное расстояние от прибора до наблюдаемого предмета (рис. 46). Рис. 46. Предельное расстояние от прибора до предмета Предельный угол зрения при рассматривании изображения в трубу принимается равным 60''/ Г . Зная Г и диаметр S, например, вехи, можно, рассматривая S как дугу радиуса D написать: АВ = S; S = D ∙ α(в радианах) Dпр = 206265" ∙ S ∙ Г / 60'' = 3438' ∙ S ∙ Г . При Г = 20x и S = 3 см Dпр≈2 км. Вычисленное расстояние надо считать приблизительным, так как указанная формула не учитывает рефракцию, прозрачность воздуха и другие условия, влияющие на наблюдения. Штативы Для установки теодолитов на местности используют штативы (рис. 8.7, а, б). Верхняя часть штатива представляет собой горизонтально расположенную металлическую площадку 1, называемую головкой. В середине головки размещается отверстие, через которое пропускают становой винт 2, крепящий теодолит со штативом. С головкой соединены нераздвижные (постоянной длины) и раздвижные (переменной длины) ножки 3. В нижней заостренной части 4 ножек есть упоры 6, с помощью которых ножки вдавливают в грунт для придания устойчивости штативу. Рис. 8.7. Штативы ШН (а) и ШР (б): 1 - головка (площадка); 2 - становой винт, 3 - ножка, 4 - наконечник, 5 - ремень для перенести, 6 - упор, 7 - ограничитель, 8 - зажимной блок Раздвижные ножки позволяют регулировать высоту штатива. Штативы с нераздвижными ножками позволяют изменять высоту головки над поверхностью грунта в более ограниченных пределах, однако они более устойчивы. Так как непосредственное визирование на точку, закрепленную в грунте знаком, бывает затруднено из-за неровностей местности и растительности, над знаком устанавливают визирные цели, марки, вехи, шпильки. Для построения на местности прямых углов с небольшой точностью служит двухзеркальный геодезический эккер ЭГ (рис. 8.10, а). Эккер состоит из трехгранного металлического корпуса 3, к граням которого с внутренней стороны под углом 45° прикреплены колодочки с зеркалами 1 и 5. Угол между зеркалами регулируют винтами 6 и 7. Над зеркалами вырезаны окна 2 и 4. К коробке эккера привинчена ручка 8. При построении прямого угла наблюдателю необходимо центрировать ручку эккера над точкой. Для этого на ручке есть кольцо 9, к которому крепится нитяной отвес. Для построения прямого угла (рис. 8.10, б) в точке 0 к створу АВ необходимо, чтобы в зеркале ab была видна исходная визирная цель, установленная в точке А. Одновременно по створу в окне над зеркалом ab "на глаз" выставляют вторую визирную цель, перемещаемую по створу до совпадения ее изображения с изображением исходной визирной цели. Визирная цель устанавливается в точке, от которой должен быть опущен перпендикуляр к створу АВ. Наблюдатель с эккером перемещается вдоль створа линии АВ до совмещения визирных целей, видимых в окне. Правильность работы эккера проверяют так. В створе линии АВ в точке С дважды восстанавливают перпендикуляр: сначала ориентируясь по точке А, затем -по точке В. Если угол между зеркалами равен 45°, то визирные цели, устанавливаемые в точке С, совпадут. Исправления при необходимости выполняют регулировочными винтами 6 и 7. Рис. 8.10. Двухзеркальный эккер ЭГ (а) и построение прямого угла эккером над точкой 0 (б): 1, 5 - зеркала, 2, 4 - окна, 3 - корпус, 6, 7 - винты, 8 - ручка, 9 – кольцо Лекция 8. Линейные измерения. Измерения линий на местности могут выполняться непосредственно, путем откладывания мерного прибора в створе измеряемой линии, с помощью специальных приборов дальномеров и косвенно. Косвенным методом измеряют вспомогательные параметры (углы, базисы), а длину вычисляют по формулам. |