Физиология человека. Косицкий. Литература москва Медицина 1985 Для студентов медицинских институтов
Скачать 7.39 Mb.
|
Для поддержания деятельности изолированных органов теплокровных животных физиологические растворы насыщают кислородом и добавляют к ним глюкозу. Однако указанные растворы не содержат коллоидов (которыми являются белки плазмы) и быстро выводятся из кровеносного русла, т.е. восполняют объем потерянной крови на очень короткое время. Поэтому в последние годы созданы синтетические коллоидные кровезаменители (реополиглюкин, желатиноль, гемодез, полидез, неокомпенсан и др.), которые вводят человеку после кровопотери и по другим показаниям для нормализации объема крови и артериального давления. Однако идеального кровезаменителя типа «искусственная кровь» пока не создано. белки плазмы крови Значение белков плазмы крови многообразно: 1). они обусловливают онкотическое давление, которое определяет обмен воды между кровью и тканями; 2) обладая буферными свойствами, поддерживают рН крови; 3) обеспечивают вязкость плазмы крови, имеющую важное значение в поддержании артериального давления; 4) препятствуют оседанию эритроцитов; 5) участвуют в свертывании крови; 6) являются необходимыми факторами иммунитета; 7) служат переносчиками ряда гормонов, минеральных веществ, липидов, холестерина; 8) представляют собой резерв для построения тканевых белков; 9) осуществляют креаторные связи, т.е. передачу информации, влияющей на генетический аппарат клеток и обеспечивающей процессы роста, развития, дифференцировки и поддержания структуры организма (примерами таких белков являются так называемые «фактор роста нервной ткани», эритропоэтины и т.д.). Молекулярная масса, сравнительные размеры и форма белковых молекул крови приведены на рис. 111. Как видно из рисунка, размеры молекулы альбумина близки к размерам гемоглобина. Молекула глобулина обладает большими размерами и массой, а наибольшую молекулярную массу имеет комплекс белка с липидами — липопротеиды. Изменение свойств и структуры липопротеидов играет важную роль в развитии «ржавчины жизни» — атеросклероза. Молекула фибриногена имеет удлиненную,форму, что облегчает образование длинных нитей фибрина при свертывании крови. В плазме крови содержится несколько десятков различных белков, которые составляют 3 основные группы: альбумины, глобулины и фибриноген. Для разделения белков плазмы применяют метод электрофореза, основанный на неодинаковой скорости движения разных белков в электрическом поле. С помощью этого метода глобулины разделены на несколько фракций: .сп-, аг-, у-глобулинЫ. Электрофореграмма белков плазмы приведена на рис. 112. В последние годы применяют более тонкий метод разделения белков плазмы крови — иммуноэлектрофорез, при котором в электрическом поле передвигаются не нативные белки, а комплексы белковых молекул, связанных со специфическими антителами. Это позволило выделить гораздо большее количество белковых фракций. Онкотическое давление плазмы крови Осмотическое давление, создаваемое белками, (т.е. их способностью притягивать воду), называется онкотическим давлением. Абсолютное количество белков плазмы крови равно 7—8 % и почти в 10 раз превосходит количество кристаллоидов, но создаваемое ими онкотическое давление составляет лишь '/зоо осмотического давления плазмы (равного 7,6 атм), т.е. 0,03—0,04 атм (25—30 мм рт. ст.). Это обусловлено тем, что молекулы белков очень велики и число их в плазме во много раз меньше числа молекул кристаллоидов. В наибольшем количестве содержатся в плазме альбумины. Величина их молекулы меньше чем молекулы глобулинов и фибриногена, а содержание заметно больше, поэтому онкотическое давление плазмы более чем на 80 % определяется альбуминами. Альбумины Рис. 112. Кривая разделения белков плазмы крови' человека, полученная при электрофорезе. Гемоглобин 68000 в. -липопротеин г/ 1300000 Альбумин 69000 а,-липопротеин 200000 Шкала 10 ммкм Na CI Глюкоза (3,-глобулин Гамма-глобулин 90000 Фибриноген 400000 Рис. 111. Молекулярная масса, сравнительные размеры и форма белковых молекул крови. Несмотря на свою малую величину, онкотическое давление играет решающую роль в обмене воды между кровью и тканями. Оно влияет на процессы образования тканевой жидкости, лимфы, мочи, всасывания воды в кишечнике. Крупные молекулы белков плазмы, как правило, не проходят через эндотелий капилляров. Оставаясь в кровотоке, они удерживают в крови некоторое количество воды (в соответствии с величиной их онкотиче- ского давления). При длительной перфузии изолированных органов растворами Рингера или Рингера- Локка наступает отек тканей. Если заменить физиологический раствор кристаллоидов кровяной сывороткой, то начавшийся отек исчезает. Именно поэтому в состав крОвезаме- щающих растворов необходимо вводить коллоидные вещества. При этом онкотическое давление и вязкость подобных растворов подбирают так, чтобы они были равны этим параметрам крови. СВЕРТЫВАНИЕ КРОВИ Жидкое состояние крови и замкнутость (целостность) кровеносного русла являются необходимыми условиями жизнедеятельности. Эти условия создает система свертывания крови (система гемокоагуляции), сохраняющая циркулирующую кровь в жидком состоянии и восстанавливающая целостность путей ее циркуляции посредством образования кровяных тромбов (пробок, Сгустков) в поврежденных сосудах. В систему гемокоагуляции входит кровь и ткани, которые продуцируют, используют .и выделяют из организма необходимые для данного процесса вещества, а также нейро- гуморальный регулирующий аппарат. Знание механизмов свертывания крови необходимо для понимания причин ряда заболеваний и возникновения осложнений, связанных с нарушением гемокоагуляции. В настоящее время более 50 % людей умирает от болезней, обусловленных "нарушением свертывания крови (инфаркт миокарда, тромбоз сосудов головного мозга, тяжелые кровотечения в акушерской и хирургической клиниках и др.). Основоположником современной ферментативной теории свертывания крови является профессор Дерптского (Юрьевского, а ныне Тартуского) университета А. А. Шмидт (1872). Его теорию поддержал и уточнил П. Моравиц (1905). За столетие, прошедшее после создания теории Шмидта-Моравица, она была значительно дополнена. Сейчас считают, что свертывание крови проходит 3 фазы: 1) образова ние протромбиназы, 2) образование тромбина и 3) образование фибрина. Кроме них, выделяют предфазу и послефазу гемокоагуляции. В предфазу осуществляется сосудисто- тромбоцитарный гемостаз (этим термином называют процессы, обеспечивающие остановку кровотечений), способный прекратить кровотечение из микроциркуляторных сосудов с низким артериальным давлением, поэтому его называют также микрОциркуля- торным гемостазом. Послефаза включает в себя два параллельно протекающих процесса— ретракцию (сокращение, уплотнение) и фибринолиз (растворение) кровяного сгустка. Таким образом, в процесс гемостаза вовлечены 3 компонента: сте.нки Кровеносных сосудов, форменные элементы крови и плазменная ферментная система свертывания плазмы. ПЛАЗМЕННЫЕ ФАКТОРЫ СВЕРТЫВАНИЯ КРОВИ Международный комитет по номенклатуре факторов свертывания крови обозначил плазменные факторы римскими цифрами в порядке их .хронологического открытия. Фактор I—фибриноген — представляет собой самый крупномолекулярный белок плазмы, образуется в печени, его концентрация в крови составляет 200—400 мг %. При свертывании крови фибриноген из состояния золя переходит в гель —фибрин, образующий основу кровяного сгустка. Содержание фибриногена резко возрастает при беременности, в послеоперационном периоде,,при всех воспалительных процессах и инфекционных заболеваниях. Во время менструации, а также при болезнях печени его концентрация уменьшается. Кроме участия в гемостазе, фибрин служит структурным материалом для заживления ран. Фактор II —протромбин — является глюкопротеидом, образуется клетками печени при участии витамина К. Фактор III—тканевый тромбопластин — по своей природе представляет собой фосфолипид и входит в состав мембран всех клеток организма, в том числе эндотелия сосудов. Он необходим для образования тканевой протромбиназы. Фактор IV— кальций — содержится в крови наполовину в виде ионов и наполовину в виде комплексов с белками плазмы. В свертывании участвуют лишь ионы Са2+, которые необходимы для всех фаз свертывания крови. Кровь доноров предохраняют от свертывания путем связывания ионов Са2+ различными стабилизаторами (например, цитратом натрия). Факторы Vh VI — проакцелерин и акцелерин. Их вместе называют акцелератор-гло: булин (Ас-глобулин). Эти вещества представляют неактивную и активную форму одного и того же фактора, поэтому термин «фактор VI» не применяют. Фактор V образуется в печени, участвует в 1-й и 2-й фазах гемокоагуляции. Фактор VII — конвертик — синтезируется в печени при участии витамина К, требуется для образования тканевой протромбиназы. Фактор VIII — антигемофильный глобулин А (АГГ)— необходим для формирования кровяной протромбиназы. Его генетический дефицит служит причиной гемофилии А, протекающей с тяжелыми кровотечениями. Фактор IX—фактор Кристмаса, или антигемофильный глобулин В — образуется в печени в присутствии витамина К, требуется в Г фазе гемокоагуляции. При его генетическом дефиците наблюдается гемофилия В. Фактор X— фактор Стюарта-П payэра — назван, как и предыдущий, по фамилиям больных, у которых впервые обнаружен дефицит этого соединения. Синтезируется в печени при участии витамина К, участвует в 'формировании и входит в состав тканевой и кровяной протромбиназ. Фактор XI—плазменный предшественник тромбопластина (РТА)—образуется в присутствии витамина К в печени, требуется.для образования кровяной протромбиназы, где он активирует фактор IX. Дефицит фактора XI служит причиной гемофилии С. Фактор XII —фактор Хагемана — активируется п^ри^контакте с; чужеродной поверхностью (например, местом повреждения сосуда), поэтому его называют также контактным фактором. Фактор XI I является инициатором образования кровяной протромбиназы и всего процесса гемокоагуляции. После активации он остается на поверхности поврежденного сосуда, что предупреждает генерализацию, свертывания крови. Объектом действия фактора Хагемана является фактор Xf, с которым он образует комплекс — продукт контактной активации. Кроме системы гемокоагуляции, фактор XII активизирует калли- креинкиновую систему, систему комплемента и фибринолиз. Генетический дефицит этого фактора служит причиной болезни Хагемана. Фактор XI11 — фибринстабилизирующий (фибриназа, фибринолигаза, трансглута- миназа) — содержится в плазме, клетках крови и в тканях. По химической структуре фибриназа является гл и ко протеидом, синтезируется в печени и при свертывании полностью потребляется. Фактор XIII необходим для образования окончательного или, нерастворимого фибрина «I». Действие фибриназы сводится к образованию ковалент- ных пептидных связей между соседними молекулами фибрин-полимера, после чего фибрин становится механически прочным и устойчивым к фибринолизу. Фактор XIII активируется тромбином и ионами Са2+. При врожденном дефиците фибриназы резко ухудшается заживление бытовых и хирургических ран, что говорит о необходимости этого фактора для'регенерации. ФАКТОРЫ СВЕРТЫВАНИЯ ФОРМЕННЫХ ЭЛЕМЕНТОВ КРОВИ И ТКАНЕЙ В гемостазе участвуют все клетки крови и особенно тромбоциты. Тромбоциты — бесцветные двояковыпуклые образования диаметром от 0,5 до 4 мкм, т.е. они в 2—8 раз меньше эритроцитов. В крови здоровых людей содержится 200-400- • 109/л тромбоцитов (200 000—400 000 в 1 мкл) . Они образуются в костном мозге из мега- кариоцитов. Из одной такой клетки формируется 3000—4000 кровяных пластинок. Продолжительность жизни последних составляет 8-—12 сут. Имеются суточные колебания количества тромбоцитов: днем их больше, чем ночью. Их число изменяется при эмоциях, физической нагрузке, после еды. При прилипании тромбоцитов к поврежденным сосудам они образуют 2—10 отростков, за очет которых и происходит прикрепление. Химический состав тромбоцитов очень сложен. Они содержат набор ферментов, адреналин, норадреналин, лизоцим, много АТФ и фермент АТФ-азу, функцию которого выполняет сократительный белок кровяных пластинок тромбостенин. В последние годы в тромбоцитах обнаружено много специфических соединений, участвующих в свертывании крови. Их называют тромбоцитарными (пластиночными) факторами и нумеруют арабскими цифрами. Одним из наиболее важных тромбоцитарных соединений является фактор 3 — тромбоцитар- ный тромбопластин, или тромбопластический фактор. Он представляет собой фосфалипид и находится в мембране кровяных пластинок и их гранул. Этот фактор освобождается после разрушения тромбоцитов и используется в I фазе свертывания крови. Фактор 4 — антигепариновый — связывает гепарин и таким путем ускоряет процесс гемокоагуляции. Фактор 5 —- свертывающий фактор, или фибриноген, определяет адгезию (клейкость) и агрегацию (скучивание) тромбоцитов. \ . . Фактор б — тромбостенин — обеспечивает уплотнение и сокращение кровяного сгустка. По своим свойствам он напоминает актомиозин скелетных мышц, состоит из субъединиц А и М, подобных актину и миозину. Будучи АТФ-азой, тромбостенин сокращается за счет энергии расщепляемой им АТФ. Фактор 10 — сосудосуживающий — представляет собой серотонин, который адсорбируется тромбоцитами из крови. Это соединение суживает поврежденные сосуды и уменьшает кровопотерю. Фактор 11 —фактор агрегации — по химической природе является АДФ и обеспечивает скучивание тромбоцитов в поврежденном сосуде. Помимо АДФ, эту же задачу выполняет недавно обнаруженный тромбоксан, который является самым мощным стимулятором агрегации. В эндотелии сосудов находится простациклин — самый мощный ингибитор агрегации. Баланс между этими веществами определяет скучивание кровяных пластинок. Кроме участия в гемостазе, тромбоциты осуществляют транспорт креаторных веществ, важных для сохранения структуры сосудистой стенки. Они поглощаются клетками эндотелия, доставляя им находящиеся в тромбоцитах макромолекулы. На эти цели ежедневно расходуется около 15 % циркулирующих в крови тромбоцитов. Без взаимодействия с тромбоцитами эндотелий сосудов подвергается дистрофии и начинает пропускать через себя эритроциты. В гемостазе участвуют эритроциты. Их форма удобна для прикрепления нитей фибрина, а их очень пористая поверхность катализирует процесс гемокоагуляции. В эритроцитах найдены почти все факторы, которые содержатся в тромбоцитах, за исключением тромбостенина. Лейкоциты имеют в своем составе тромбопластический и антигепариновый факторы, естественные антикоагулянты (гепарин базофилов), активаторы фибринолиза. Число лейкоцитов по сравнению с эритроцитами невелико, поэтому их роль в гемостазе у здоровых людей незначительная. Вокруг всех форменных элементов крови имеется «плазматическая атмосфера», из адсорбированных плазменных факторов свертывания, что способствует процессу гемокоагуляции. Весьма существенную роль в гемостазе играют ткани, особенно стенки сосудов. Все ткани и органы содержат очень активный тромбопластин (фосфолипиды клеточных мембран), антигепариновый фактор, естественные, антикоагулянты, соединения, подобные плазменным факторам Y, YII, X и XIII, вещества, вызывающие адгезию и агрегацию тромбоцитов, активаторы .и ингибиторы фибринолиза. При повреждении сосудов и прилежащих тканей все эти вещества контактируют с кровью и активно участвуют в ее свертывании и последующем фибринолизе. Наибольшей активностью среди факторов свертывания крови, находящихся в тканях, обладает тромбопластин. Он сохраняет свое действие после разведения экстрактов в 5000—500 000 раз. Активаторы фибринолиза прекращают свое влияние после разведения экстрактов тканей в 10—100 раз. Поэтому при проникновении в кровоток тканевой жидкости под влиянием тканевого тромбопластина всегда развивается внутрисосудистое свертывание крови с последующими кровотечениями — тромбогеморрагический синдром (ТГС). СОСУДИСТО-ТРОМБОЦИТАРНЫЙ ГЕМОСТАЗ Этот механизм способен самостоятельно прекратить кровотечение из наиболее часто травмируемых микроциркуляторных сосудов с низким артериальным давлением. Он складывается из ряда последовательных процессов:
3. Обратимая агрегация (скучиван.ие) тромбоцитов. Она начинается почти одновременно с адгезией.. Главным стимулятором этого процесса являются «внешняя» АДФ, выделяющаяся из поврежденного сосуда, и «внутренняя» АДФ, освобождающаяся из тромбоцитов и эритроцитов. Образуется рыхлая тромбоцитарная пробка, которая пропускает через себя плазму крови. 4. Необратимая агрегация тромбоцитов (при которой тромбоцитарная пробка становится непроницаемой для крови). Эта реакция возникает под влиянием тромбина, изменяющего структуру тромбоцитов («вязкий метаморфоз» кровяных пластинок). Следы тромбина образуются под влияниемтканевой тромбиназы, которая появляется через 5—10 с после повреждения сосуда. Тромбоциты теряют свою структурность и сливаются в гомогенную массу. Тромбин разрушает мембрану тромбоцитов, и их содержание осво бождается в кровь. При этом выделяются все пластиночные факторы и новые количества АДФ, увеличивающие размеры тромбоцитарного тромба. Освобождение фактора 3 дает начало образованию тромбоцитарной протромбиназы — включению механизма коагуля- ционного гемостаза. На агрегатах тромбоцитов образуется небольшое количество нитей фибрина, в сетях которого задерживаются эритроциты и лейкоциты. ' 5. Ретракция тромббцитарного тромба —- его уплотнение и закрепление в поврежденных сосудах за счет сокращения тромбостенина. В результате образования тромбоцитарной пробки кровотечение из микроциркуляторных сосудов, чаще всего повреждаемых при бытовых травмах (ссадины, порезы кожи), останавливается за несколько минут. КОАГУЛЯЦИОННЫЙ ГЕМОСТАЗ Сосудисто-тромбоцитарные реакции обеспечивают гемостаз лишь в микроциркуляторных сосудах с низким кровяным давлением. Они же начинают гемостаз и в крупных сосудах, однако тромбоцитарные тромбы не выдерживают высокого давления и вымываются. В таких сосудах гемостаз может быть достигнут путем образования фибри- нового тромба, представляющего собой более прочную пробку. Его образование осуществляется ферментативным коагуляционным механизмом, протекающим в 3 фазы. Схема 1. Коагуляционный гемостаз Повреждение сосуда Разрушение тром-боцитов и эритроцитов Тромбоцитарный и эритроцитарный тромбопластин (фосфолипиды)
Тнаневый тромбопластин (фосфолилиды) -Vll+Ca -V -X Тканевая протромбиназа Кровяная протромбиназа Тромбин Протромбин X V- Са2+ t t » Са 2+ XIII Фибрин- — полимер (фибрин „S") • Фибрин-- мономер Окончательный фибрин (фибрин „I") Фибриноген- Фаза I. Самой сложной и продолжительной фазой является формирование протромбиназы. В этом процессе различают внешнюю (тканевую) и внутреннюю (кровяную) систему. Внешний путь запускается тканевым тромбопластином, который выделяется из сте- нок поврежденного сосуда и окружающих тканей. Во внутренней системе фосфолипиды и другие факторы поставляются самой кровью. В I фазу образуются тканевая, тромбоцитарная и эритроцитарная протромбиназы. Последние две'часто называют кровяной протромбиназой. Образование тканевой протромбиназы длится 5—10 с, а кровяной — 5-—10 мин. . ■ • Толчком для.образования тканевой протромбиназы служит повреждение стенок сосудов с выделением из них в кровь тканевого тромбопластина (фосфолипидов),,представляющего собой фрагменты (осколки) клеточных мембран. Наряду с ними; обнажаются торцевые грани мембран поврежденных клеток с регулярной структурой двойного слоя фосфолипидов. Как видно из схемы, в формировании тканевой протромбиназы участвуют плазменные факторы VII, V, X и кальций. Образование тканевой протромбиназы в большинстве тканей является лишь запалом или пусковым механизмом для последующих реакций, протекающих с--меньшей скоростью. Тканевая протромбиназа приводит к образованию небольших количеств тромбина, которые достаточны лишь для агрегации тромбоцитов с освобождением их пластиночных факторов, а также для активации факторов V и VIII. Кровяная протромбиназа образуется намного медленнее. Это связано с тем, что фосфолипиды находятся в клетках крови и требуется их предварительное разрушение. Как правило, в месте трамвы сосудов разрушается небольшое количество эритроцитов. Из тромбоцитов фосфолипиды освобождаются только после вязкого метаморфоза, вызываемого тромбином. Инициаторьк образования кровяной протромбиназы не осколки мембран клеток крови, а обнажающиеся при повреждении сосуда волокна коллагена. Как видно из схемы 1, начальной реакцией является активация фактора Хагемана при контакте с данными волокнами. После этого он с помощью активированного им калли- крецна и кинина активирует фактор XI, образуя с ним комплекс — продукт контактной активации. К этому времени происходит разрушение эритроцитов и тромбоцитов, на фос- фолипидах которых завершается образование комплекса фактор ХНЦ-фактор XI. Эта реакция самая продолжительная, на нее уходит 5—7 мин из 5—10 мин всего времени свертывания крови. Дальнейшие реакции образования кровяной протромбиназы протекают на. матрице фосфолипидов. Под влиянием фактора XI активируется фактор IX, который реагирует с фактором VIII и ионами Саг+, образуя кальциевый комплекс. Он адсорбируется на фосфолипидах и после этого активирует фактор X. Активированный фактор X на матрице фосфолипидов образует последний комплекс фактор Х+фактор V-f кальций ихзавершает образование кровяной протромбиназы. Главной ее частью служит активный фактор X. . Фаза II. Появление протромбиназы знаменует начало II фазы свертывания крови — образование тромбина. По сравнению с I фазой этот процесс протекает практически мгновенно — за 2—5 с. Такая скорость обусловлена тем, что протромбиназа адсорбирует протромбин и на своей поверхности превращает его в тромбин. Этот процесс протекает при участии факторов V, X и Са2+. Фаза III. В III фазе происходит превращение фибриногена в фибрин. Этот процесс протекает в 3 этапа^ На 1-м этапе под влиянием тромбина из фибриногена образуется золеобразный фибрин-мономер. На 2-м этапе под влиянием ионов Са2+ наступает полимеризация фибрин-мономеров и образуется.фибрин-полимер (растворимый фибрин «S»). На 3-м этапе при участии фактора XIII и фибриназы тканей, тромбоцитов и эритроцитов образуется окончательный или нерастворимый фибрин «I». Фибриназа образует прочные пептидные связи между соседними молекулами фибрин-полимера, что цементирует фибрин, увеличивает его механическую прочность и устойчивость к фибринолизу. Образование фибрина завершает образование кровяного тромба. Таким образом, свертывание крови представляет собой цепной ферментативный процесс, в котором, на матрице фосфолипидов последовательно активируются факторы свертывания и образуются их комплексы. Фосфолипиды клеточных мембран выступают как катализаторы взаимодействия и активации факторов свертывания,.ускоряя течение процесса гемокоагуляции. фИБРИНОЛИЗ После образования фибринового сгустка начинается послефаза свертывания крови, включающая два процесса — ретракцию и фибринолиз. Ретракция обеспечивает уплотнение и закрепление тромба в поврежденном сосуде. Она осуществляется лишь при достаточном количестве тромбоцитов за счет их .сократительного белка тромбостенина. При своем сокращении он сжимает сгусток до 25—50.% первоначального объема, что закрепляет его в сосуде более надежно. Ретракция заканчивается в течение 2—3 ч после образования сгустка. Одновременно с ретракцией, но с меньшей скоростью начинается фибринолиз — расщепление фибрина, составляющего основу тромба. Главная функция фибринолиза— восстановление просвета (реканализация) закупоренного сгустком сосуда. Расщепление фибрина осуществляется протеолитическим ферментом плазмином, который находится в плазме в виде профермента плазминогена. Для его превращения в плаз.Мин требуются активаторы, содержащиеся в крови и тканях. Таким образом, система фибринолиза, как и система свертывания крови, имеет внутренний и внешний механизмы активации. Внутренний механизм осуществляется ферментами самой крови, а внешний — тканевыми активаторами. В плазме крови находится кровяной проактиватор пЛазминоге-на, требующий активации, осуществляемой кровяной лизокиназой, которой является фактор Хагемана.,Активация происходит не только в месте повреждения сосуда, но и в кровотоке под влиянием адреналина. В крови находятся и другие стимуляторы фибринолиза: урокиназа (фермент, вырабатываемый почками),.трипсин, кислая и щелочная фосфатазы, калликреинг кининовая система и комплемент Ci. Основными регуляторами фибринолиза служат сами ткани, особенно стенки сосудов. Они содержат тканевые.лизокиназы, поступающие в кровь и превращающие кровяной проактиватор в активатор. В тканях найдены также активаторы фибринолиза, которые действуют прямо на плазминоген, превращая его в плазмин. Такой путь активации называют прямым. Часть тканевых активаторов неспособна выделяться в кровь и.действует локально, обеспечивая фибринолиз в тканях. Другая часть тканевых активаторов водорастворима и поступает в кровь. Особенно много тканевых л изокиназ и активаторов сосредоточено в микроциркуляторных сосудах, где, они синтезируются и депонируются. В каждой фазе фибринолитического процесса имеются свои ингибиторы: антилизо- киназы, антиактиваторы, антиплазмины.
Схема 2. Фибринолиз ■«-Тканевые ■лизокиназы Фактор XII Антиплазмины- 1(*-Плазмин Кровяной проактиватор Фибрин ^-Плазмин Антилизо — киназы 1 Кровяной активатор Пептиды и аминонислоты I фаза И фаза 111 фаза Как видно из схемы 2, фибринолиз протекает в 3 фазы. В I фазу образуется кровяной активатор плазминогена, во II фазу он и другие стимуляторы превращают плазминоген в плаз мин и в III фазу плазмин расщепляет фибрин до пептидов и аминокислот. Эффективность фибринолиза определяется тем, что при свертывании крови фибрин адсорбирует плазминоген, который превращается в плазмин в сгустке. Естественным стимулятором фибринолиза является внутрисосудистое свертывание крови или ускорение этого процесса. У здоровых людей активация фибринолиза всегда происходит вторично — в ответ на усиление-гемокоагуляции. . По некоторым данным, кроме ферментативного фибринолиза, в организме имеется неферментативный фибринолиз. Он осуществляется комплексами гепарина с адреналином, фибриногеном, фибриназой, антиплазминами и др., которые тормозят свертывание крови и лйзируют растворимые предстадии фибрина. Угнетение этой системы фибринолиза повышает риск внутрисорудйстого свертывания и тромбообразования. ПРОТИВОСВЕРТЫВАЮЩИЕ МЕХАНИЗМЫ Циркулирующая кровь имеет все необходимое для свертывания, однако остается жидкой. Сохранение жидкого состояния крови — одного из важных параметров гомеостаза — главная функция системы гемокоагуляции. Свертывание крови представляет вторичное, защитное приспособление, в'ключающееся при повреждении сосудов. Система гемокоагуляции в естественных условиях поддерживает жидкое состояние крови и оптимальное состояние стенок сосудов. Жидкое состояние крови сохраняется за счет многих механизмов: 1) свертыаанию крови препятствует гладкая поверхность эндотелия сосудов, что предотвращает активацию фактора Хагемана и,агрегацию тромбоцитов; 2) стенки сосудов и форменные элементы крови имеют отрицательные заряды, что отталкивает клетки крови от сосудистых стенок; 3) стенки сосудов покрыты тонким слоем растворимого фибрина адсорбирующим активные факторы, свертывания, особенно тромбин; 4) свертыванию мешает большая скорость течения крови, что не позволяет факторам гемокоагуляции достигнуть нужной концентрации в одном месте; 5) жидкое состояние крови поддерживается имеющимися в ней естественными антикоагулянтами. И. П. Павлов еще в 1887 г. обратил внимание на то, что кровь, оттекающая от легких, свертывается медленнее, чем притекающая. Это он объяснил поступлением в кровь из легких веществ, тормозящих гемокоагуляцию. Имеющиеся в организме антикоагулянты делят на две группы: 1) предсуществую- щие (первичные) и 2) образующиеся в процессе свертывания крови и фибринолиза (вторичные). ! ' ' В первую группу входит несколько антитромбопластин.ов, тормозящих образование и действие протромбиназы. В крови имеется несколько антитромбинов. Самым мощным из них является антитромбин III. При врожденном дефиците антитромбина III развиваются тяжелые тромбоэмболические явления. Вторым по мощности среди первичных антикоагулянтов является а2-макроглобулин (или антитромбин IV). Очень активным первичным антикоагулянтом является гепарин, продуцируемый базофилами и тучными клетками соединительной, ткани. Количество базофилов мало, зато все тучные клетки организма имеют массу |