Главная страница

мат мет-лекции-ИНТЕРНЕТ. Математические методы в психологии


Скачать 2.19 Mb.
НазваниеМатематические методы в психологии
Дата01.06.2022
Размер2.19 Mb.
Формат файлаdoc
Имя файламат мет-лекции-ИНТЕРНЕТ.doc
ТипДокументы
#561290
страница3 из 35
1   2   3   4   5   6   7   8   9   ...   35

Тема 2 Описательные статистики

Меры центральной тенденции


Существуют 3 способа выражения центральной тенденции распределения: мода, среднее арифметическое, медиана.

Мода – это наиболее часто встречающееся значение в ряду данных. Например, в следующей выборке: {2, 3, 5, 1, 4, 5, 6, 5, 2} модой будет являться значение 5 (обозначатся следующим образом: Мо = 5). Если массив содержит 2 моды, то распределение называется бимодальным. Таким примером может служить выборка {3, 3, 5, 1, 4, 5, 6, 5, 3}. Здесь Мо1 = 5, а Мо2 = 3.

Бимодальное или полимодальное распределение могут рассматриваться как признак неоднородности выборки. Например, школьный класс образован в результате механического слияния двух разных классов, и показатели мод интеллекта были изначально различны. После слияния в объединенной выборке профиль интеллекта будет иметь 2 моды.

Среднее арифметическое – это отношение суммы всех значений данных к числу слагаемых. Среднее арифметическое обозначается как Мх или М. Число слагаемых (то есть объем выборки) обозначается буквой n.



В качестве примера можно рассмотреть последний массив:
{8, 9, 11, 12, 12, 13, 14, 17, 19, 19, 20, 20}.
Мх = (8 + 9 + 11 + 2 * 12 + 13 + 14 + 17 + 2 * 19 + 2 * 20) / 12 = 14,5

Если в ряду данных присутствуют числа со знаком «минус», то суммирование производится с учетом этих знаков.

Медиана разбивает выборку на 2 равные части. Для определения медианы рекомендуется сначала упорядочить данные. Например, для определения значения медианы в массиве {8, 11, 12, 20, 12, 13, 9, 15, 19, 17, 19} необходимо этот массив упорядочить (произвести сортировку по возрастанию): {8, 9, 11, 12, 12, 13, 15, 17, 19, 19, 20}. Медиана будет равна 13 (обозначатся след. образом: Ме = 13). Если количество данных в выборке четное, то медиана равна средней арифметической между двумя центральными значениями. Например, если добавить в последнюю выборку значение 20, и упорядоченный массив примет следующий вид: {8, 9, 11, 12, 12, 13, 15, 17, 19, 19, 20, 20}, то медиана будет равна 14. В подобном случае медиана не может соответствовать ни одному из значений выборки. Медиана может принимать и дробные значения. Например, если мы в последнем примере 15 (одно из двух центральных значений) заменим на 14, то выборка примет вид {8, 9, 11, 12, 12, 13, 14, 17, 19, 19, 20, 20} и медиана будет равна 13,5.

Меры изменчивости


В качестве наиболее часто используемых мер изменчивости следует назвать размах, дисперсию, стандартное отклонение.

Размах – это разница между максимальным и минимальным значениями.
Р = Хmax – Xmin
Для определения размаха выборку необходимо сначала уорядочить. Например, в массиве данных {8, 9, 11, 12, 12, 13, 14, 17, 19, 19, 20, 20} размах будет равен разности между наибольшим и наименьшим значениями, то есть 20 – 8 = 12. но если бы выборка была неупорядочена и имеет большой объем, было бы трудно найти минимальное и максимальное значения.

Дисперсия – это мера разброса данных относительно среднего значения.


Если вычисление дисперсии производится вручную, то рекомендуется пользоваться специальной таблицей. Например, необходимо вычислить дисперсию для следующего массива данных {5, 2, 5, 3, 4, 3, 4, 3, 3, 1, 2, 1}. Упорядоченные данные заносятся в таблицу.

Хi

Мx

Хi - Мx

i – Мx)2

1

3

-2

4

1

3

-2

4

2

3

-1

1

2

3

-1

1

3

3

0

0

3

3

0

0

3

3

0

0

3

3

0

0

4

3

1

1

4

3

1

1

5

3

2

4

5

3

2

4

n = 12, Мx = 3







Σ(Хi – Мx)2 = 20


В соответствии с формулой D = 20 / (12 – 1) = 1,818

Стандартное отклонение представляет собой квадратный корень из дисперсии:

По ряду причин этот показатель является более удобным чем дисперсия.
1   2   3   4   5   6   7   8   9   ...   35


написать администратору сайта