мат мет-лекции-ИНТЕРНЕТ. Математические методы в психологии
Скачать 2.19 Mb.
|
Зависимые и независимые выборкиЗависимые выборки содержат результаты, полученные на одной и той же группе испытуемых, но в разные моменты времени. Например, до и после стимульного воздействия. Количество объектов в этих выборках всегда одинаковое. Независимые выборки получаются при исследовании двух различных групп испытуемых. Например, это экспериментальная и контрольная группы. Допускается, чтобы количество объектов в них было различным. Для иллюстрации можно предложить следующую схему.
Группы 1 и 3 являются зависимыми выборками. Также зависимыми друг относительно друга являются выборки 2 и 4. Перед началом исследования требуется сравнить выборки 1 и 2, чтобы удостовериться, что испытуемые имеют одинаковый исходный уровень (иначе эксперимент не будет «чистым»). Эта процедура называется оценка достоверности различий. Указанные группы 1 и 2 являются независимыми выборками. На фазе заключительных срезов сравниваются показатели выборок 1 и 3, чтобы удостовериться, что был сдвиг каких-либо психологических параметров. Эта процедура называется оценка достоверности сдвига. Необходимо также убедиться, что сдвиг был обусловлен именно стимульным воздействием, а не влиянием другого неконтролируемого фактора. Для этого следует снова оценить достоверность различий, но уже в выборках 3 и 4. Оценки достоверности различий и достоверности сдвигов определяются посредством использования специальных статистических критериев, о которых речь пойдет ниже. Степени свободыВ таблицах критических значений приводятся или показатели объема выборки, или показатели степеней свободы. Степень свободы (обозначается как df или ν)это величина производная от объема выборки (обозначаемой буквой n). Вопрос о степени свободы всегда возникает при сравнении выборок. Если мы не определили этого параметра, то мы не сможем пользоваться таблицами. Число степеней свободы – это число данных из выборки, значения которых могут быть случайными. Если, допустим, сумма трех данных равна 8, то первые два из них могут принимать любые значения, но если они определены, то третье значение становится известным автоматически. Например, значение первого данного равно 3, а второго равно 1. В таком случае третье может быть равным только 4. таким образом, в такой выборке имеются только 2 степени свободы. Если у нас имеются две независимые выборки, то число степеней свободы для первой из них составляет n1 – 1, а для второй – n2 – 1. Таким образом, число степеней свободы для этих независимых выборок будет составлять (n1 + n2 ) – 2. Для зависимых выборок число степеней свободы равно n – 1. Классификация и назначение критериевСтатистические критерии делятся на параметрические и непараметрические. Параметрические критерии включают в формулу расчета среднее арифметическое и дисперсии и применяются при анализе метрических данных, вписывающихся в кривую нормального распределения. При работе с непараметрическими критерии оперируют частотами и рангами. При этом данные должны быть измерены в номинативной или ранговой шкале. Непараметрический критерий рекомендуется использовать также для анализа метрических данных, распределение которых значительно отличается от нормального. При этом метрические данные следует перевести в ранговые. Статистические критерии можно также классифицировать в зависимости от задач, стоящих перед исследователем (см. табл.).
В настоящем пособии материал будет далее излагаться в соответствии с этой классификацией. Как видно из таблицы, иногда одна и та же задача может быть решена при помощи различных методов. При этом разные критерии характеризуются разной мощностью, то есть, различной чувствительностью к выявлению различий, если они есть. Задания для самостоятельной работы.Допустим, требуется сравнить уровень интеллекта мужчин и женщин. Как будут выглядеть нулевая и альтернативная гипотезы данного исследования? Привести собственные примеры зависимой и независимой выборок. Чему равна степень свободы для двух зависимых выборок объемом n = 6? Чему равна степень свободы для двух независимых выборок объемом n1 = 10 и n2 = 12? |