Медицинская биология
Скачать 0.84 Mb.
|
Вопрос 63. Основы молекулярной генетики. Структура гена. Коллинеарность /. Ген — часть хромосомы 2. Цистрон, его структура 3. Различия между функциями генов. Опероны 4. Явление коллинеарности 1. Изучение химической структуры ДНК и генетических функций позволяет рассматривать гены как участки нуклеиновой кислоты, характеризующиеся определенной специфической последовательностью нуклеотидов. Расшифровка материальной сущности гена — одно из важных достижений современной биологической науки. Первоначально считалось, что гены представляют собой часть хромосомы и являются неделимой единицей, обладающей рядом свойств: • способностью определять признаки организма; • способностью к рекомбинации, т. е. перемещению из одной гомологической хромосомы в другую при кроссинговере; • способностью мутировать, давая новые аллельные гены. В дальнейшем оказалось, что ген представляет собой сложную систему, в которой указанные способности не всегда бывают нераздельными. Первые представления о сложной структуре гена возникли еще в 20-х гг. XX столетия. Советские генетики А. С. Серебровский и Н.П. Дубинин выдвинули предположение, что ген состоит из отдельных "ступенек". В настоящее время это блестяще подтвердилось новыми исследованиями. Ген представляет собой часть молекулы ДНК и состоит из сотен пар нуклеотидов. 2. Ген как функциональную единицу предложено называть цис-троном, который определяет последовательность аминокислот в каждом специфическом белке. Цистрон подразделяется на предельно малые в линейном измерении единицы - реконы, способные к рекомбинации при кроссинговере. Выделяют, кроме того, мутоны — наименьшие части гена, способные к изменению (мутированию). Размеры рекона и мутона могут равняться одной или нескольким парам нуклеотидов, цистрона - сотням и тысячам нуклеотидов. 3. Оказалось, что разные функции гена связаны с отрезками цепи ДНК различной величины. Ген имеет сложную структуру, внутри которой могут осуществляться процессы мутирования и рекомбинации. Обнаружены также гены, которые не контролируют синтеза белков, но регулируют этот процесс. Таким образом, возникла необходимость разделить гены на две категории: • структурные; - функциональные. Структурные гены определяют последовательность аминокислот в полипептидной цепи. У тех бактерий, у которых они изучены, структурные гены, как правило, располагаются в хромосоме в последовательности, соответствующей кодируемым реакциям. Функциональные гены, по-видимому, не образуют специфических продуктов, которые можно обнаружить в цитоплазме. Эти гены контролируют функцию других генов. Один из функциональных генов получил название гена-оператора. Ген-оператор и ряд структурных генов, расположенных рядом в линейной последовательности, составляют оперон — единицу считывания генетической информации, т. е. с каждого оперона снимается своя молекула информационной РНК. Функция гена-оператора регулируется геном-регулятором. Он кодирует синтез белка-репрессора. Наличие или отсутствие этого белка, присоединяющегося к гену-оператору, определяет начало или прекращение считывания информации. 4. Коллинеарность — свойство, обусловливающее соответствие между последовательностью кодонов нуклеиновых кислот и аминокислот полипептидных цепей. Иными словами, коллинеарность - свойство, благодаря которому в белке воспроизводится та же последовательность аминокислот, в какой соответствующие кодоны располагаются в гене. Это означает, что положение каждой аминокислоты в полипептидной цепи зависит от особого участка гена. Генетический код считается коллинеарным, если кодоны нуклеиновых кислот и соответствующие им аминокислоты в белке расположены в одинаковом линейном порядке. Явление коллинеарности доказано экспериментально. Серповидно клеточная анемия, при которой нарушено строение молекулы гемоглобина, обусловлена дефектами расположения нуклеотидов в гене, ответственном за синтез гемоглобина. Было установлено расстояние между аминокислотами, зависимыми от этих мутаций, и расположение мутонов на генетической карте гена триптофансинтетазы, совпадающее с расположением аминокислот в этом ферменте. Аминокислоты заменялись в соответствии с изменением нуклеотидного состава соответствующих триплетов. Гипотеза о том, что последовательность аминокислот в белке определяется последовательностью нуклеотидов в гене, была высказана Г.А. Гамовым. Данные о коллинеарности полипептидов подтвердили ее. Благодаря концепции коллинеарности можно: • определить примерный порядок нуклеотидов внутри гена и информационной РНК, если известен состав полипептидов; • предсказать аминокислотный состав белка, определив состав нуклеотидов ДНК; • сделать вывод, что изменение порядка нуклеотидов внутри гена (мутация) приводит к изменению аминокислотного состава белков. Вопрос 64. Репарация 1. Световая репарация 2. Темновая репарация 1. Под действием различных физических и химических агентов и даже при нормальном биосинтезе в ДНК могут возникнуть повреждения. Оказалось, что клетки обладают способностью самостоятельно исправлять повреждения в молекуле ДНК. Этот феномен получил название репарации. Первоначально способность к репарации была обнаружена у бактерий, подвергавшихся воздействию ультрафиолетового излучения. В результате облучения целостность молекул ДНК нарушалась, так как в ней возникали димеры, т. е. сцепленные между собой соединения в области оснований. Димеры образуются: • между двумя тиминами; • тимином и цитозином; • двумя цитозинами; • тимином и урацилом; • двумя урацилами. Облученные клетки на свету выживали гораздо лучше, чем в темноте. После тщательного анализа причин было установлено, что в облученных клетках на свету происходит репарация. Она осуществляется специальным ферментом, активирующимся квантами видимого света. Фермент соединяется с поврежденной ДНК, разъединяет возникшие в димерах связи и восстанавливает целостность нити ДНК. 2. Позднее была обнаружена и темновая репарация, т. е. свойство клеток ликвидировать повреждения ДНК без участия видимого света. Темновая репарация осуществляется комплексом из пяти ферментов: • узнающего химические изменения на участке цепи ДНК; • осуществляющего вырезание поврежденного участка; • удаляющего этот участок; • синтезирующего новый участок по принципу комплементарно-сти взамен удаленного фрагмента; • соединяющего концы старой цепи и восстановленного участка. При световой репарации исправляются повреждения, возникшие только под воздействием ультрафиолетовых лучей, при темновой — повреждения, появившиеся под влиянием жесткой радиации, химических веществ и других факторов. Темновая репарация обнаружена у прокариот и в клетках эукариот. У последних она изучается в культурах тканей. Вопрос о том, почему одни повреждения репарируются, а другие нет, остается открытым. Если репарация не наступает, то клетка гибнет либо наступает мутация. Вопрос 65. Особенности передачи наследственной информации у про- и эукариот /. Взаимодействие генных продуктов в цитоплазме 2. Различия в передаче наследственной информации в клетках прокариот и эукариот 1. В большинстве случаев отдельные гены, по-видимому, самостоятельно не определяют характер признака. В явлениях ком-плементарности, эпистаза и плейотропии обнаруживается фе-нотипическое выражение молекулярных взаимодействий генов. В ряде экспериментов, проведенных в лабораторных условиях с ферментами, выделенными из организмов с различным генотипом, показано, что механизм комплементарного взаимодействия генов заключается во взаимодействии генных продуктов в цитоплазме. 2. Фундаментальные различия в передаче наследственной информации в клетках прокаритов и эукариот состоят в следующем: • у прокариот и-РНК, образующаяся на молекулах ДНК, немедленно приступает к синтезу белка на рибосомах; • у эукариот на молекулах ДНК образуется ДНК, подобная и-РНК и получившая название д-РНК. Она представляет собой высокомолекулярное соединение с относительной молекулярной массой 2 000 000-10 000 000. Информационная РНК (и-РНК), находящаяся в цитоплазме клеток животных, имеет молекулярную массу в пределах 200 000-600 000; • у эукариот д-РНК является предшественником и-РНК. Находясь еще в ядре, д-РНК "созревает", расщепляясь при участии ферментов на более короткие цепи РНК. Большая часть этих цепей распадается, и только незначительная часть — истинная и-РНК, выходит в цитоплазму. Вопрос о том, почему у эукаритотов образуется д-РНК и какова ее роль, остается неясным. Вопрос 66. Генная инженерия. Современное состояние теории гена /. Перспективы генной инженерии 2. Основные положения теории гена 1. Обнаружение точной структуры гена послужило предпосылкой к выдвижению идеи переноса генов из одних организмов в другие, т. е. генной инженерии, цель которой — создание новых генетических структур и организмов с новыми наследственными свойствами. Для переноса молекул нуклеиновой кислоты используют векторы. В качестве векторов служат вирусы, проникающие в клетку, т. е. моделируется принцип трансдукции. Операция по переносу наследственной информации предусматривает три этапа: • получение необходимого вектора; \/ получение гена или генов, необходимых для переноса и смешивания их с вектором, т. е. гибридных молекул; • введение гибридных молекул в клетку и репликация их. Введенные в клетку молекулы могут существовать в ней в комплексе с хромосомами либо в свободном состоянии как плазмиды. Принципиальная возможность искусственного включения новых генов в клетку доказана в ряде экспериментов: - в колонию бактерий кишечной палочки из штамма, неспособного синтезировать аминокислоту триптофан, с помощью фага был введен соответствующий ген, и бактерии приобрели новое свойство, т. е. стали синтезировать триптофан; • из клеток южноафриканской лягушки был выделен фрагмент ДНК, введен в клетки кишечной палочки, где обнаружилась его способность синтезировать и-РНК лягушачьего типа. Генная инженерия в будущем, возможно, обеспечит создание организмов с новыми свойствами, например бактерий, синтезирующих человеческие гормоны, микроорганизмов, обладающих повышенной продуктивностью для получения антибиотиков, а в гораздо более отдаленном будущем, может быть, поможет человечеству избавиться от наследственных болезней. 2. В результате исследований элементарных единиц наследственности сложилась теория гена, основные положения которой сводятся к следующему. • ген занимает определенный участок (локус) в хромосоме; • ген (цистрон) - это часть молекулы ДНК, представляющая собой определенную последовательность нуклеотидов и служащая функциональной единицей наследственной информации. Число нуклеотидов, входящих в состав различных генов, неодинаково; • внутри гена могут происходить рекомбинации и мутирование; • существуют структурные и функциональные гены; - структурные гены кодируют синтез белков, но ген не принимает непосредственного участия в синтезе белка. ДНК — матрица для синтеза молекул и-РНК; • функциональные гены контролируют и направляют деятельность структурных генов; • расположение нуклеотидных триплетов в структурных генах коллинеарно последовательности аминокислот в полипептидной цепи, кодируемой данным геном; • молекулы ДНК, входящие в состав гена, способны к репарации, поэтому не всякие повреждения гена ведут к мутациям; • генотип, будучи дискретным (состоящим из отдельных генов), функционирует как единое целое. На функцию генов оказывают влияние внутриклеточные факторы и факторы внешней среды. Вопрос 67. Нехромосомная наследственность 1. Внеядерная наследственность 2. Пластидная и цитоплазматическая наследственность Признание за ядром главенствующей роли в передаче наследственных свойств не исключает существования внеядерной наследственности, которая связана с органоидами клетки, способными к саморепродукции. Факторы наследственности, расположенные в клетках вне хромосом, получили название плазмид. Функция плазмид, как и генов, находящихся в хромосомах, связана с ДНК. Установлено, что собственную ДНК имеют: • пластиды (пластидная ДНК); • митохондрии (митохондриальная ДНК); • центриоли (центриолярная ДНК) и некоторые другие органоиды. Эти цитоплазматиче-жие структуры способны к авторепродукции. С ними связана передача цитоплазматической наследственности. Проявление этой формы наследственности находится под контролем ядерной ДНК. 2. Пластидная наследственность обнаружена у декоративных цветов львиного зева, ночной красавицы и др. У этих растений наряду с расами, имеющими зеленые листья, есть расы пест-ролистости. Признак пестролистости передается только по материнской линии. Цитоплазматическая наследственность известна у ряда культурных растений. У кукурузы существуют сорта с мужской стерильностью, которая передается исключительно через цитоплазму женских половых клеток. В цитоплазме бактерий обнаружены автономно расположенные плазмиды, состоящие из кольцевых молекул двунитчатой ДНК. Эти бактериальные плазмиды обусловливают: • половую дифференцировку; • устойчивость к ряду лекарственных веществ; • синтез некоторых белков. Феноменом цитоплазматической наследственности объясняются длительные модификации. Иногда генотип материнского организма оказывает влияние на следующее поколение через цитоплазму яйцеклетки. Такое влияние называется предетермина-ции, когда действует наследственная информация, заложенная в хромосомах и определяющая особенности яйцеклетки еще до оплодотворения. Вопрос 68. Наследственность и среда. Фенотипическая (ненаследственная) изменчивость /. Норма реакции 2. Пенетрантность. Реализация наследственной информации в разных условиях 3. Фенотипическая изменчивость — модифика»ия 4. Длительные модификации Диапазон изменчивости, в пределах которой в зависимости от условий среды один и тот же генотип способен давать различные фенотипы, называется нормой реакции. В ряде случаев у одного и того же гена в зависимости от особенностей генотипа и характера внешних условий возможна различная полнота фенотипического проявления: от почти полного отсутствия контролируемого геном признака до полной его выраженности. Степень выраженности признака при реализации генотипа в различных условиях называется экспрессивностью, т. е. выраженностью фенотипического проявления гена. Она связана с изменчивостью признака в пределах нормы реакции. Один и тот же признак может проявляться у одних организмов и отсутствовать у других, имеющих тот же ген. 2. Количественный показатель фенотипического проявления называется пенетрантностыо. Характеризует пенетрантность процент особей, проявляющих в фенотипе данный ген, по отношению к общему числу особей, у которых ген мог бы проявиться. Тот факт, что один и тот же генотип может стать источником различных фенотипов, имеет большое значение для медицины: • отягощенная наследственность не обязательно должна проявиться фенотипически; • многое зависит от условий, в которых находится человек. В ряде случаев болезнь как фенотипическое проявление наследственной предрасположенности можно предотвратить соблюдением диеты или приемом лекарственных препаратов. Реализация наследственной информации находится в прямой зависимости от среды. Взаимозависимость генотипа и фенотипа можно сформулировать так: • организмов вне среды не существует. Поскольку организмы — открытые системы, находящиеся в единстве с условиями среды, то и реализация наследственной информации происходит под контролем среды; • один и тот же генотип способен дать различные фенотипы, что определяется условиями, в которых реализуется генотип в процессе онтогенеза отдельной особи; • в организме могут развиться лишь признаки, обусловленные генотипом. Фенотипическая изменчивость происходит в пределах нормы реакции по каждому конкретному признаку; • условия среды могут влиять на степень проявления наследственного признака у организмов, имеющих соответствующий ген, или на численность особей, проявляющих соответствующий наследственный признак. 3. Модификациями называются фенотипические изменения, возникающие под влиянием условий среды. Размах модификационной изменчивости ограничен нормой реакции. Конкретное модификационное изменение признака не наследуется, но диапазон модификационной изменчивости обусловлен наследственностью. Модификационные изменения не влекут за собой изменения генотипа. Норма реакции, лежащая в основе модификационной изменчивости, складывается в результате естественного отбора. В силу этого модификационная изменчивость, как правило, целесообразна. Она соответствует условиям обитания и является приспособительной. 4. Особую группу модификационной изменчивости составляют длительные модификации, которые возникают под влиянием внешней среды, подобно обычным модификациям, но передаются ряду последующих поколений. Так, при воздействии высокой или пониженной температуры на куколок колорадского картофельного жука, окраска взрослых животных изменяется. Этот признак держится в нескольких поколениях, а затем возвращается прежняя окраска. Данный признак передается в поколениях, если воздействию температурного фактора подвергались только самцы. Длительные модификации наследуются по типу цитоплазматической наследственности. По-видимому, под влиянием того или иного внешнего фактора происходят изменения в тех частях цитоплазмы, которые затем могут авторепродуцироваться. |