|
Медицинская биология
Вопрос 81 Фотосистемы I, II. Линейный (нециклический) фотоперенос электронов. Фотолиз воды и фотофосфорилирование
/. Фотосистемы I и II в тилакоидных мембранах
2. Линейная цепь фотопереноса электронов
3. Хемиосматическая гипотеза
1. В тилакоидных мембранах молекулы пигментов расположены вместе с белками и другими компонентами в двух различных комплексах — фотосистеме I и фотосистеме II (ФС1 и ФСП).
Каждая фотосистема содержит:
• во-первых, 1 молекулу "пигмента реакционного центра" (ПРЦ, хлорофилл А), которая после поглощения света (возбуждения) выполняет фотохимическую работу (перенос электронов);
• во-вторых, множество молекул "пигментов-антенн", или "коллекторов" (хлорофиллы А и В, каротиноиды), передающих поглощенную энергию ПРЦ и возбуждающих его.
ФС1 имеет в качестве ПРЦ пигмент-700 (хлорофилл АО — две молекулы хлорофилла, которые благодаря взаимодействию диполь-диполь возбуждаются легче, чем хлорофилл-мономер.
ПРЦ в ФСП представляет собой пигмент-680 (хлорофилл А2). ФСИ содержит особенно много хлорофилла В.
Фотохимическая работа пигмента реакционного центра осуществляется следующим образом:
• возбужденная молекула пигмента (ХЛ) отдает валентный электрон акцептору электронов с отрицательным окислительно-восстановительным потенциалом (ОВП);
• образующийся при этом пигментный катион (ХЛ+) отнимает электрон от донора электронов с положительным ОВП.
Таким образом, электроны переходят с более низкогоэнергетического уровня на более высокийпротив градиента ОВП:
• ФС1 переводит электроны: Е'О + 0,4В —> Е'О - 0,4В (фотореакция I);
• ФСИ: Е'О + 0,8В -» Е'О - 0,15В (фотореакция II).
2. При линейном фотопереносе электронов используются кванты света и Н2О. В результате отрыва электронов под действием
света (фотоокисление) соответствующие молекулы воды распадаются, образуя протоны и О%. Этот кислород, освобождающийся при фотосинтезе, происходит из Н2О, а не из СО2: 2Н2О + свет = 4е + 4Н+ + О2. Линейный фотоперенос электронов поставляет два продукта:
• АТР;
• NADP ЧН + Н+.
Освобождение протонов при фотолизе Н2О уравновешивается использованием их при образовании NADP4H + Н+.
Цепь транспорта электронов идет от Н2О через обе фотосистемы к NADP. В фотореакции II (в ФСП) и фотореакции I (в ФС1) электроны последовательно два раза поднимаются "в гору", каждый раз за счет энергии одного кванта света — эндергонические процессы. На промежуточном этапе они спускаются "под гору" — экзергонический процесс, при этом образуется АТР. Линейную цепь фотопереноса электронов можно представить следующим образом:
• донор электронов Н2О отдает электроны переносчику электронов Z (Мп-протеиду), от которого они через пигмент-680 переходят к акцептору электронов в ФСП — "гасителю" Qнеизвестной химической природы (фотореакция II);
• следующий переносчик электронов пластохинон (Pq) в химическом и функциональном отношении сходен с убихиноном и, так же как и последний, растворен в липидной фазе мембраны;
• далее идет цитохром-В559-железопорфирин. Как и все цитохро-мы, он является компонентом частиц ФСП, тогда как цито-хром fи, вероятно, пластоциамин {Рс-Си-протеид, переносящий электроны) находятся в электронно-транспортных частицах тилакоидной мембраны;
• от Рс электроны через пигмент-700 передаются еще неизвестному акцептору электронов в ФС1 — веществу X(фотореакция I) и далее ферредоксину (Fd-белку, содержащему железо и серу), приобретая весьма высокую энергию, так как Fd обладает чрезвычайно низким окислительно-восстановительным потенциалом;
• затем флавопротеид в качестве кофермента осуществляет перенос электронов на NADP.
К описанной линейной цепи фотопереноса электронов относится еще ряд компонентов неизвестной химической природы.
3. Согласно хемиосмотической гипотезе, фотосинтетическое образование АТР происходит с помощью протонного насоса. Pq, Fd и NADP переносят не только электроны, но и водород (е + Н+). Протоны используются при восстановлении Pq и Fd и освобождаются при окислении Н2О и Pq. Окислительно-восстановительные системы, по-видимому, расположены в тилакоидных мембранах, так что потребление Н+ происходит на внешней стороне, а освобождение — внутри тилакоидов. Это протонный насос, приводимый в действие электронами.
Создающийся при этом градиент концентрации протонов заставляет мембранную АТРазу синтезировать АТР. Мембранная АТРаза состоит из двух субъединии:
• CF0;
• CF1.
Вопрос 82. Превращение веществ при фотосинтезе (темновой процесс)
/. Темновая фаза. Фазы цикла Кальвина
2. Путь СЗ- и С4-дикарбоновых кислот. Образование оксалоацетата
3. Фотодыхание у растений
1. В темновой фазе при использовании продуктов светового процесса (NADP Ч Н и АТР) из СО2 синтезируется углевод.
В расчете на 1 молекулу СО2 (или Ох) получается: СО2 + 2[Н2]
+ энергия АТР -» (СН2О) + Н2О.
Подробнее этот процесс можно описать следующей схемой: СО2
+ 2(NADP Ч Н + Н+) + ЗАТР -> (СН2О) + 2NADP+ + Н2О +
3(АДР + Р),
где (СН2О) означает 1/6 молекулы глюкозы.
Цикл Кальвина — главный путь ассимиляции СО2. Это циклический процесс, в который вводится СО2 и из которого выходит углевод. Процесс можно разделить на три фазы:
• карбоксилирование СО2. Углекислый газ, связываясь с рибуло-зобифосфатом (фосфатом сахара с пятью атомами С), образует две молекулы фосфоглицерата. Эту реакцию катализирует ри-булозобифосфат-карбоксилаза;
• восстановление. Фосфоглицерат при участии NADP Ч Н (восстановитель) и АТР (донор энергии) восстанавливается до 3-фосфоглицеральдегида. Эта последовательность реакций представляет собой обращение окислительных этапов гликолиза;
• регенерация. Каждая шестая молекула фосфоглицеральдегида выходит из цикла, и из этого вещества образуется фруктозо-1,6-бифосфат. Из фруктозо-1,6-бифосфата синтезируются глюкоза, сахароза крахмал и т. д. Из остальных молекул фосфоглицеральдегида при участии новых молекул АТР регенерируется рибулозобифосфат. В качестве промежуточных продуктов образуются различные фосфаты Сахаров.
С окончанием этой фазы цикл замыкается. Ферменты цикла находятся в строме хлоропласта, а рибулозобифосфат-карбокси-лаза — на наружной стороне тилакоидных мембран.
2. У большинства растений первый продукт ассимиляции в цикле Кальвина — глицерат (СЗ). Такие растения называются "СЗ-растения", а путь ассимиляции СО2, идущий в них, — "СЗ-путь", или путь СЗ-дикарбоновых кислот.
У многих тропических и субтропических растений встречается путь С4-дикарбоновых кислот. Он не заменяет, а лишь дополняет цикл Кальвина. В листьях этих растений вокруг обкладки сосудистого пучка, в клетках которой осуществляется цикл Кальвина, лежат клетки мезофилла, где ассимиляция идет по другому пути. Первые продукты ассимиляции СО2 здесь имеют четыре атома углерода, поэтому такие растения называют "С4-растениями". При С4-пути СО2 присоединяется в мезофилле к фосфоенолпирувату с образованием С4-дикарбоновой кислоты — оксалоацетата.
Это нестабильное вещество стабилизируется путем восстановления(с помощью NADP) до малата (яблочной кислоты):
• малат переходит в клетки обкладки сосудистого пучка, где в результате его окислительного декарбоксилирования образуются СО2 и NADP Ч Н для цикла Кальвина;
• получаемый при этом пируват возвращается в клетки мезофилла, фосфорилируется в фосфоенолпируват, и С4-путь замыкается.
У некоторых С4-растений малат заменен аспартатом (аспара-гиновой кислотой). Обе ткани обмениваются и другими промежуточными продуктами. Например, фосфоглицерат, синтезируемый в фазе карбоксилирования цикла Кальвина в клетках обкладки, попадает в клетки мезофилла и там восстанавливается до фосфоглицеральдегида.
При благоприятных для роста условиях тропиков и субтропиков С4-путь позволяет достичь наивысшей продуктивности фотосинтеза (например, у сахарного тростника, кукурузы, проса). Отчасти это связано с тем, что карбоксилирующий фермент фосфоенолпируват-карбоксилаза более эффективен, чем рибулозобифосфат-карбоксилаза цикла Кальвина:
• карбоксилирование фосфоенолпирувата даже при минимальной концентрации СО2 происходит очень интенсивно;
• в результате в обкладке сосудистого пучка накапливаются большие количества СО2, которые ускоряют цикл Кальвина.
Высокая продуктивность здесь связана с большой затратой энергии (большая потребность в свете!). При таком пути ассимиляции нужны дополнительно 2 моля АТР на 1 моль СО2, так как фосфорилирование пирувата — процесс эндергониче-ский и требует затраты 2 молей АТР.
Для С4-растений оптимальная температура фотосинтеза составляет 30-45 °С, а для СЗ-растений - 15-25 °С.
3. Фотодыхание (световое "дыхание") - побочный путь фотосинтеза, который:
• сопровождается потреблением О2 и освобождением СО2;
• в отличие от дыхания он не ведет к синтезу АТР.
Чем меньше концентрация СО2 и чем выше концентрация О2 в ткани, тем больше наряду с обычной функиией рибулозобифоо-фат-карбоксилазы: рибулозобифосфат + СО2 -> 2фосфоглицерат + Н2О проявляется ее вторая функция: рибулозобифосфат + О2 —» фосфоглицерат + фосфогликолат.
Фосфогликолат дефосфорилируется в хлоропластах. Гликолат выделяется, окисляется в пероксисомах до глиоксилата и далее превращается в глицин, а из глииина в митохондриях может синтезироваться серии:
• фосфогликолат + Н2О -» гликолат + фосфат (хлоропласты);
• гликолат + О2 —» глиоксилат + Н2О2 (пероксисомы);
• глиоксилат + [NH3] -> глицин (пероксисомы);
• 2глицин -> Серии + NH3 + CO2 (митохондрии). Фотодыхание поставляет важнейшие аминокислоты — глицин и серии.
Однако часть серина может возвращаться в хлоропласты в виде глицерата после превращения в пероксисомах, а затем в виде фосфоглицерата поступать в цикл Кальвина. При этом циклическом процессе СЗ-растения могут терять до 50% ассимилированного СО2. У С4-растений фотодыхание минимально, прежде всего из-за высокой концентрации СО2, которая и обусловливает С4-путь в обкладке сосудистого пучка, где рибуло-зобифосфат-карбоксилаза может способствовать образованию фосфогликолата (фотодыхание).
Вопрос 83. Хемосинтез. Гетеротрофная ассимиляция. Обмен жиров и белков
1. Хемосинтез
2. Гетеротрофная ассимиляция
3. Метаболизм жиров и белков
1. Помимо фотосинтеза существует еще одна форма автотрофной ассимиляции — хемосинтез, свойственный некоторым бактериям. В отличие от фотосинтеза источником энергии здесь служит не свет, а окисление неорганических веществ. Хемосинтез, как и фотосинтез, включает:
• преобразование энергии;
• преобразование вещества.
При превращении веществ из СО2 образуются (в основном таким же путем, как при фотосинтезе) органические ассимилянты, в частности углеводы (получаются в результате окисления неорганических веществ, например H2S).
Часть электронов, отнятых у неорганических веществ (окисление!), переносится на NAD (например, H2S + NAD+ —> S + NAD 4 H + Н+) и используется для восстановления при превращении веществ. Другая часть через цепь транспорта электронов направляется к кислороду и доставляет энергию для синтеза АТР, подобно тому, как это происходит в цепи дыхания.
2. Гетеротрофные клетки должны потреблять в качестве пищи органические вещества. Гетеротрофная ассимиляция сводится в основном к процессам перестройки молекул. Например, поглощаемые белки расщепляются до аминокислот, из которых вновь синтезируются белки, свойственные данному организму. Необходимую для этого энергию доставляют процессы диссимиляции. Многие плесневые грибы обладают многообразием путей метаболизма. При этом организму достаточно одного-единственного органического вещества, чтобы синтезировать все необходимые соединения. Представители различных классов веществ превращаются друг в друга:
• аминокислоты в углеводы;
• углеводы в жиры и т. д.
Большинство других организмов из-за ограниченной способности к синтезу должны получать совершенно определенные (так называемые незаменимые) органические вещества, например аминокислоты. Обмен веществ у гетеротрофных клеток в основном катаболический, так как ассимиляция у них включает как катаболические, так и анаболические реакции, а диссимиляция — только катаболические.
В автотрофных клетках в связи с питанием неорганическими веществами преобладают анаболические реакции — приблизительно в той же мере, в какой ассимиляция преобладает у них над диссимиляцией.
3. Жиры — отличные субстраты для дыхания. Они гидролизуются до глицерина и жирных кислот. Глицерин превращается в дигидроксиацетонфосфат, используемый в процессе гликолиза. Жирные кислоты в процессе окисления постепенно расщепляются до ацетильных остатков, которые в форме ацетил-коэнзима А (ацетил-СоА) поступают в цикл лимонной кислоты: С17Н35СООН + 9СоА - SH + 7Н2О -» 9СоА - S СОСН3 + 16[Н2].
Биосинтез жирных кислот начинается с ацетил-СоА, но идет не по тому пути, по которому они расщепляются. Биосинтез глицерина начинается с дигидроксиацетонфосфата. Белки расщепляются протеазами. Освобождающиеся 20 различных аминокислот используются организмом по-разному.
• для синтеза новых белков;
• различными путями распадаются до пирувата, ацетил-СоА и промежуточных продуктов цикла лимонной кислоты:
• альфа-кетоглутарата;
• сукцината;
. фумарата;
• малата;
• оксалоацетата.
Продукты расщепления аминокислот могут также использоваться для синтеза углеводов (глюконеогенез) или вьщеляться в органической форме.
Микроорганизмы и растения способны синтезировать все 20 аминокислот. Пути синтеза их углеродных скелетов ответвляются от процессов ассимиляции или диссимиляции. По исходному веществу аминокислоты подразделяются на ряд групп. Аминогруппы образуются из поглощенного азота, чаще всего неорганического.
Вопрос 84. Регуляция активности ферментов
/. Виды внутриклеточной регуляции метаболизма
2. Ферменты, лимитирующие скорость. Конкурирующие ферменты
3. Пропротеины
1. Многообразные пути и реакции обмена веществ должны быть координированы между собой. Это упорядоченное протекание метаболических процессов достигается путем регуляции. Сюда относится и приспособление метаболизма к условиям внешней среды, особенно поразительное у гетеротрофных микроорганизмов, у которых обмен веществ зависит от типа имеющихся питательных веществ. Ферменты как катализаторы обменных реакций играют в этом регулировании ключевую роль.
Существуют следующие виды внутриклеточной регуляции:
• регуляция изменениями концентраций метаболитов (промежуточных продуктов обмена) без изменения количества ферментов и их активности;
• регуляция изменениями активности ферментов без изменения их количеств — регулирующие факторы воздействуют на ферментные молекулы;
• генная регуляция, связанная с изменением количества ферментов, — регулирующие факторы влияют на биосинтез или разрушение ферментов.
Ферментная и генная регуляция используется не для всех ферментов. Она наиболее эффективна для тех из них, которые.
• лимитируют скорость определенных процессов
• или действуют около мест разветвления метаболических путей.
2. Ферменты, лимитирующие скорость, — это ферменты, которые действуют на самом первом этапе того или иного пути и поэтому ограничивают скорость всего процесса. Например, скорость гликолиза лимитирует фосфофруктокиназа — фермент, превращающий фруктозо-6-фосфат (путем его фосфолирирования) во фруктозо-1,6-бифосфат.
В местах разветвления метаболических путей ферменты, с
которых начинаются различные пути от одного субстрата, конкурируют между собой. Например, от пирувата мультифер-ментный комплекс пируватдегидрогеназы ведет через ацетил-СоА к циклу лимонной кислоты, а другие ферменты — к биосинтезу аминокислот аланина, валина и лейцина. Замедление одного пути, обусловленное регуляцией, приводит к ускорению другого пути, так что основное направление метаболизма изменяется.
Особенно важные ферменты контролируются обычно несколькими различными механизмами; так обстоит дело, например, с комплексом пируватдегидрогеназы и фосфофруктокиназой. Регуляция обмена веществ направлена на его рационализацию, она создает селективные преимущества в эволюции. 3. Пропротеины представляют собой неактивные белки, из которых в результате ферментативного отщепления части молекулы образуется функционирующий белок, например гормон инсулин из проинсулина.
Если речь идет о ферменте, то белок-предшественник называют проферментом (энзимогеном). Например, профермент трипсиноген из поджелудочной железы превращается в тонкой кишке в активный пищеварительный фермент, расщепляющий белки — трипсин: фермент энтерокиназа отщепляет шесть аминокислотных остатков от конца цепи. В результате этого новая концевая группа изолейцинвалин становится частью каталитического центра и делает белок функционально активным. Таким образом, при процессинге белка-предшественника фермент активируется с помощью второго фермента, играющего роль регулятора.
У различных ферментов активность изменяется при ковалентном обратимом присоединении фосфата. Такое фосфорширование осуществляют протеинкиназы с помощью АТР (белок + АТР —> фосфорилированный белок + АДР), а дефосфорилирование — фосфатазы (фосфорилированный белок —» белок + фосфат). Примеры таких ферментов:
• фосфорилаза А, которая играет важную роль в обмене углеводов в печени и мышцах и фосфоролитически отщепляет глю-козо-1-фосфат от гликогена;
• упомянутый выше комплекс пируватдегидрогеназы.
|
|
|