Радиоизмерения. Метрология и радиоизмерения
Скачать 3.68 Mb.
|
Априорная информация – один из факторов, обусловливающих эффективность измерения: при ее отсутствии измерение невозможно, при наличии в максимальном объеме (известном значении измеряемой величи- ны) – ненужно. Априорная информация определяет достижимую точность измерений и их эффективность. Использование априорной информации при обработке данных является затруднительным, поскольку она с трудом поддается формальному описанию. Физическая величина в соответствии с определение может рассмат- риваться в двух аспектах: общем и конкретном. Непосредственным эле- ментом измерения является конкретная физическая величина, т. е. качест- венно определенная особенность конкретного объекта. Цель построения измерительной модели объекта состоит в выявлении (представлении) именно конкретной физической величины. Любая физическая величина Раздел 1. Теоретические основы метрологии 18 есть результат абстрагирования от реальности, однако по уровню абстра- гирования физические величины резко различаются. Так, время и длина отражают непосредственно формы существования материи, а масса и тем- пература связаны с фундаментальными свойствами всех материальных объектов. Наряду с этим система физических величин содержит, например, силу тока, характеризующую определенный тип происходящих в объектах процессов, а также твердость, представляющую собой «внешнее» описание особенности объектов, обусловленной целым рядом их фундаментальных физических свойств. Соответственно модели конкретных величин также отличаются друг от друга уровнем абстрагирования: одни из них являются «первичными», описывающими фундаментальные свойства, а другие – «вторичными», построенными на базе первых. Измеряемая величина представляет собой постоянный параметр мо- дели объекта, отражающий ту его особенность, количественную оценку которой необходимо получить в результате измерения. Измеряемая вели- чина может совпадать с выделенной физической величиной. В данном случае измеряемая и исходная физические величины тождественны. Если же свойства объекта зависят от времени или пространственных координат, то измеряемая величина представляет собой параметр (функционал) ис- ходной физической величины. Например, если напряжение изменяется, то на его модели как функции времени выделяют постоянный параметр, ко- торый представляет собой измеряемую величину. Таким параметром мо- жет быть мгновенное или эффективное напряжение. Средство измерений определяется как техническое средство, исполь- зуемое при измерениях и имеющее нормированные метрологические свой- ства. Средство измерений входит в структуру измерения двояко. Во- первых, оно является реальным техническим устройством, которое приво- дят во взаимодействие с объектом. Это взаимодействие обусловливает по- явление входного сигнала средства измерений, отклик на который – вы- ходной сигнал – несет информацию об измеряемой величине и подлежит в общем случае обработке с целью нахождения результата измерения и оценки его погрешности. Во-вторых, средство измерений характеризует- ся своей моделью, которая необходима для правильного применения сред- ства и для эффективной обработки опытных данных. Модель средства из- мерений представлена совокупностью его метрологических характеристик, т. е. характеристик тех свойств, которые оказывают влияние на результаты и погрешности измерений. Метод измерений определяется как «совокупность приемов исполь- зования принципов и средств измерений». Отметим, что метод измерений обусловлен целью измерения и, в свою очередь, определяет, как следует организовать взаимодействие средства измерений с объектом и каким об- Глава 1. Основы обеспечения единства измерений 19 разом можно извлечь из исходных и опытных данных требуемую инфор- мацию. Таким образом, алгоритм обработки данных является составной частью метода измерений (возможна узкая трактовка метода измерений, включающая в себя лишь взаимодействие средств измерений с объектом исследования). Условия измерения – важный фактор, определяющий состояние объекта и эффективность использования средства измерений. Различные условия, изменяя состояние объекта, влияют на выделенную физическую величину и через неё – на измеряемую величину и отклонение значения действительной измеряемой величины от той, которая определена при формулировании измерительной задачи. Влияние этих условий на средст- во измерений проявляется в изменении его метрологических характери- стик; та часть указанного изменения, которая остается неконтролируемой, определяет степень недостоверности результата измерения. «Уравнение измерения» представляет собой формализованное опи- сание измерения и выражает связь между исходными и опытными данны- ми, с одной стороны, и результатом измерения – с другой. Уравнения измерений могут быть представлены в явном виде лишь для прямых и косвенных измерений; для других категорий измерений они имеют неявный вид. Уравнения, полезные для анализа конкретного изме- рения, должны служить для уточнения основного уравнения (1.1). Результат измерения есть значение физической величины (совокуп- ность значений), полученное в итоге измерения. Он выражается в форме именованного числа или ряда чисел. При аналоговой регистрации изме- няющейся величины, которую можно рассматривать как совокупность не- завершенных измерений, результатом служит кривая записи на механиче- ском или электронном носителе. Если в состав алгоритма обработки дан- ных включена процедура их аппроксимации, то результат может принять форму аналитической зависимости. Измерение можно рассматривать как систему, состоящую из двух параллельных рядов соответствующих друг другу элементов, которые от- носятся к реальности и к ее отражению (познанию) – рис. 1.1. Первый ряд содержит цель измерения, модель объекта с выделенным на ней или вве- денным на ее основе параметром – измеряемой величиной, модель средст- ва измерений с параметрами (метрологическими характеристиками), дан- ные о влияющих физических величинах и помехах, воздействующих на объект и средство измерений, а также модель результатов наблюдений и алгоритм обработки. Второй ряд включает в себя объект исследования с выделенной его особенностью – физической величиной, метод измерений, средство или средства измерений, условия проведения измерений, взаимодействие сред- Раздел 1. Теоретические основы метрологии 20 ства измерений с объектом и результаты этого взаимодействия: входное воздействие на средство измерений (входной сигнал) и отклик средства измерений на это воздействие – выходной сигнал средства измерений, дающий результаты наблюдений, а также вычислительные средства. Элементы обоих рядов соответствуют друг другу по типу «реаль- ность – отражение (модель)». Адекватность моделей соответствующим ре- альностям обусловлена теоретическими и экспериментальными исследо- ваниями. Об адекватности модели объекта сказано выше. Модель средства измерений обоснована теоретически, а его метрологические характеристи- ки получены экспериментально. При условии адекватности моделей алго- ритмы вычислений результата измерения в реальном и модельном рядах тождественны. Таким образом, оба ряда неразрывно связаны между собой. Адекватность в целом реального и модельного рядов устанавливают по ре- зультатам измерительного эксперимента при оценке погрешности измере- ния. Если оценка погрешности оказывается существенно больше рассчи- танной до измерения, то это свидетельствует о наличии неучтенных фак- торов – источников, составляющих погрешности, т. е. в конечном итоге о неадекватности модели измерения. Как следует из сказанного, под моде- лью измерения следует понимать описание его структурных элементов в их взаимосвязях и взаимодействии. Таким образом, видим, что именно математическая обработка дан- ных служит связующим звеном между структурными элементами измере- ния, относящимися к реальному и идеальному (модельному) рядам, а так- же помогает уяснить, что причиной несовершенства измерения (обобщен- ным источником погрешности результата) является неустранимая (принципиальным и техническим соображениям) неполнота или неадек- ватность модельного описания реальности (рис. 1.1). Измерение является сложным процессом, для правильного выполне- ния которого необходимо знать его основные структурные элементы. 1.5. Определение измерения Измерение – это нахождение значения физической величины с по- мощью специальных технических средств, называемых средствами изме- рений. Получаемая при измерении информация называется измеритель- ной. Найденное в результате измерения значение величины называется ре- зультатом измерения. Наконец, в технической литературе и нормативной документации часто встречается термин алгоритм измерения, под кото- рым следует понимать точное предписание о порядке выполнения опера- ций, обеспечивающих измерение искомого значения величины. Глава 1. Основы обеспечения единства измерений 21 Экспериментальная операция, выполняемая в процессе измерений, в результате которой получают одно значение (из группы значений) вели- чины, называется наблюдением. В зависимости от особенностей объекта исследования для нахождения значения величины могут понадобиться ли- бо однократное измерение, либо многократные наблюдения. При много- кратных наблюдениях результат измерения получают, обработав результа- ты наблюдений. Совокупность физических явлений, на которых основано измерение, называют принципом измерений (например, термоэлектрический эффект, используемый при измерении температуры; пьезоэффект, используемый при измерении влажности, давления и т. д.). В зависимости от признаков, положенных в основу классификации, измерения подразделяют на электрические и неэлектрические, аналоговые и цифровые, статические и динамические, однократные и многократные, рав- ноточные и неравноточные, прямые, косвенные, совокупные и совместные. Признаком деления измерений на электрические и неэлектриче- ские является соответственно наличие или отсутствие в измерительной це- пи преобразования в электрический сигнал. В большинстве случаев не- электрические величины измеряют электрическими методами. Широкое внедрение электрических методов в область измерения неэлектрических величин объясняется их достоинствами, главными из которых являются: возможность осуществления дистанционных измерений и передачи ре- зультатов измерений на большие расстояния; возможность преобразования разнообразных неэлектрических величин в единую электрическую величи- ну, чем создаются условия унификации измерительной аппаратуры; удобст- во автоматизации процесса измерения, возможность проведения непрерыв- ных математических операций над результатом измерения, что позволяет автоматически вводить поправку в результаты измерений, интегрировать, дифференцировать результат; удобство в получении больших мощностей на выходе и многопредельность в измерении; возможность использования большой чувствительности и точности, которыми в ряде случаев обладают электроизмерительные приборы. Для измерения неэлектрической величины электрическим методом необходимо предварительно преобразовать измеряемую неэлектрическую величину в электрическую с помощью измерительного преобразователя неэлектрической величины. Деление измерений на аналоговые и цифровые обусловлено формой измерительной информации (аналоговой и цифровой), содержащейся в выходных сигналах аналоговых и цифровых измерительных приборов, с помощью которых осуществляются измерения. Выходным сигналом ана- логового прибора является перемещение указателя вдоль его шкалы, по Раздел 1. Теоретические основы метрологии 22 которой оператор осуществляет квантование и цифровое кодирование чи- слового значения измеряемой величины, чтобы найти ее значение. Выход- ной сигнал цифрового прибора представляет собой изображение числового значения измеряемой величины цифровыми знаками. Деление измерений на статические и динамические определяется соот- ношением между значениями статической и динамической составляющими погрешности измерения. Измерения считаются статическими, если дина- мическая погрешность пренебрежимо мала по сравнению со статической. Если же её необходимо учитывать, то это будут уже динамические измере- ния. Статическими являются измерения величин с постоянным размером, в том числе интегральных значений (действующего значения, среднего) ста- ционарных процессов. При этом время преобразования должно быть таким, чтобы успели закончиться переходные процессы, возникающие в измери- тельной цепи при подаче входного сигнала, при условии, что частотные ха- рактеристики цепи и сигнала согласованы между собой. При измерении мгновенных значений, а также постоянных величин при времени преобразо- вания, недостаточном для затухания переходных процессов из-за инерцион- ности измерительной цепи, возникают динамические погрешности. Признаком деления измерений на однократные (обыкновенные) и многократные (статистические) служит число результатов наблюде- ний при измерении данной величины, на основании которых получают ре- зультаты измерения. Многократные измерения величины неизменного размера называют- ся равноточными, если они выполняются в одинаковых условиях с помо- щью тех же самых средств и тем же оператором; в противном случае – из- мерения неравноточные. По способу получения числовых значений физических величин из- мерения подразделяются на прямые, косвенные, совместные и совокупные. При этом основным признаком является вид уравнения измерения, связы- вающего измеряемую и непосредственно наблюдаемые величины. При прямом измерении измеряемая величина Q пропорциональна непосредственно наблюдаемой Х: Q = cX, (1.2) где с – заданный коэффициент. Измерение падения напряжения на участке цепи с помощью вольт- метра, измерение массы тела путем взвешивания на пружинных весах от- носятся к прямым измерениям. При косвенном измерении величина Y является известной функцией от непосредственно наблюдаемых аргументов A 1 , ... , A m : Y = (A 1 , ... , A m ). (1.3) Глава 1. Основы обеспечения единства измерений 23 Измерение мощности, выделяемой током в резисторе, путем измере- ния действующей силы тока и активного сопротивления резистора, изме- рение плотности твердого тела путем измерений его массы и объема, а также измерение сопротивления участка цепи путем измерений силы то- ка и падения напряжения относятся к косвенным измерениям. При совместных измерениях находят функциональную зависи- мость Y = f (X) между переменными неодноимёнными величинами X и Y путем измерения ряда величин X 1 , ... , X m и соответствующих им величин Y 1 , ... , Y m : Y i = f (X i ). (1.4) Многочисленные примеры совместных измерений дают задачи по- строения градуировочных характеристик средств измерений, т. е. зависи- мостей Y = f (X) , связывающих величину X на входе с величиной Y на вы- ходе средства измерений. Например, упомянем линейную градуировочную характеристику вольтметра переменного тока и квадратичную характери- стику воздушного термопреобразователя. При совокупных измерениях значения набора одноименных величин Q 1 , ... , Q k , как правило, определяют путем измерений сумм или разностей этих величин в различных сочетаниях: 1 k i ij j j Y c Q , (1.5) где коэффициенты с ij принимают значения +1 или 0. Примерами совокупных измерений являются задачи калибровки на- боров мер (например, наборов гирь или магазинов сопротивлений), а также калибровки углов многогранных призм. Эти и многие другие примеры бу- дут рассматриваться далее. Методом измерений называют способ (совокупность приемов) ис- пользования принципов и средств измерений. Алгоритм измерений представляет собой последовательность опе- раций подготовки и выполнение измерений, т. е. процедуру измерений. Сочетание метода и алгоритма измерений составляет методику изме- рений. Методика измерений, требования к выполнению которой регламен- тированы соответствующими нормативно-техническими документами в ви- де стандарта или аттестата, называется методикой выполнения измерений. Из определения понятия измерения следует, что неотъемлемым его признаком является сравнение информации о размере измеряемой величи- ны с информацией об определенном размере, воспроизводимой мерой. Классифицируя методы измерений, можно выделить методы одновремен- ного и разновременного сравнения. Сейчас методы разновременного срав- Раздел 1. Теоретические основы метрологии 24 нения часто называют методаминепосредственной оценки, подразумевая под ними методы, основанные на использовании измерительных приборов, шкала которых проградуирована в единицах измеряемой величины. К ме- тодам непосредственной оценки относятся прямые измерения, за исключе- нием методов, основанных на непосредственном сравнении размера изме- ряемой величины с размером величины, воспроизводимой мерой. Методы, основанные на одновременном сравнении, объединены об- щим названием – методы сравнения. К ним относятся: компенсационный метод, метод противопоставления, метод замещения, метод совпадений, дифференциальный метод, нулевой метод (рис. 1.2). Компенсационный метод измерений состоит в том, что на вход сравнивающего устройства (компаратора) одновременно воздействуют по- лярная или векторная измеряемая величина и одноименная ей величина, размер которой воспроизводится мерой, а соотношение между их размера- ми определяется по выходному сигналу сравнивающего устройства изме- рителем разности (рис. 1.3). |