Главная страница
Навигация по странице:

  • 4.2.2. Концентрацию ионов можно измерять внутриклеточными электродами [15]

  • 4.2.3. Быстрые изменения концентрации внутриклеточных ионов можно измерять с помощью светоизлучающих индикаторов [16]

  • 4.2.4. Существует несколько методов для введения в клетки молекул, не проникающих через мембрану [17]

  • 4.3. Разделение клеток и их культивирование [18]

  • 4.3.1. Клетки можно выделить из тканей и разделить на различные типы [19]

  • Молекулярная биология клетки. Том 1. Молекулярная биология клетки 2Molecular Bruce Alberts, Dennis Bray,Biology


    Скачать 25.6 Mb.
    НазваниеМолекулярная биология клетки 2Molecular Bruce Alberts, Dennis Bray,Biology
    АнкорМолекулярная биология клетки. Том 1.pdf
    Дата22.04.2017
    Размер25.6 Mb.
    Формат файлаpdf
    Имя файлаМолекулярная биология клетки. Том 1.pdf
    ТипДокументы
    #5292
    страница27 из 79
    1   ...   23   24   25   26   27   28   29   30   ...   79
    196
    изотопы
    1
    Н,
    23
    Na,
    31
    P,
    39
    K и редкие изотопы
    13
    Cu
    15
    N. Ввиду важной роли соединений фосфора, которую они играют в метаболизме, эффективным оказывается определение ЯМР
    13
    Р. Этот изотоп в норме присутствует в фосфорсодержащих веществах клеток. Сигналы, создаваемые им, можно использовать для слежения за изменением внутриклеточной концентрации в процессе мышечного сокращения таких соединений, как АТР и неорганический фосфат. Сигналы ЯМР от изотопа фосфора
    31
    Р полезны также для точного измерения внутриклеточного рН, поскольку резонансная частота неорганического фосфата определяется состоянием его ионизации и, следовательно, рН раствора (рис. 4-31).
    Редкие изотопы
    13
    С и
    15
    N в норме не содержатся в клетках в достаточных количествах, однако их можно вводить в специфические макромолекулы, имеющие биологическое значение. С помощью ЯМР удается следить впоследствии за их химической трансформацией. Если, например, выращивать клетки на среде с глюкозой
    13
    С, то, измеряя в течение некоторого времени спектр ЯМР образца, можно определять скорость многих реакций, в которых участвует глюкоза. Используя другие меченные
    13
    С и
    15
    N соединения, можно в принципе следить за перемещением атомов углерода и азота по любым метаболическим путям.
    Основным ограничением метода ЯМР является его низкая чувствительность. Например, для определения содержания какого-либо соединения с использованием современных модификаций метода
    31
    Р-ЯМР, в грамме живой ткани должно содержаться не менее 0,2 мМ исследуемого соединения. Однако многие метаболиты присутствуют в живых тканях в более низких концентрациях. Более того, поскольку для снятия одного спектра ЯМР требуется, как правило, несколько минут, можно не уловить быстрые изменения цитохимических характеристик. С другой стороны, значительное преимущество ЯМР состоит в его безвредности для живых клеток, и это обстоятельство делает данный метод весьма перспективным для клеточной биологии.
    4.2.2. Концентрацию ионов можно измерять внутриклеточными электродами [15]
    Для изучения отдельных клеток необходимо использовать методы более чувствительные, чем ЯМР. Один из них основан на подходе, разработанном электрофизиологами для изучения разности потенциалов и тока на плазматической мембране. С этой целью готовят внутриклеточные
    микроэлектроды.
    Они состоят из тонких стеклянных трубок, диаметр конца которых измеряется долями микрона; такие трубочки заполняют электропроводным раствором (обычно это раствор соли КС1 в воде). Кончик микроэлектрода вводят в цитоплазму через плазматическую мембрану, которая смыкается вокруг капилляра, плотно прилегая к стеклу, так что клетка остается относительно неповрежденной.
    В исследовании клеточного содержимого микроэлектроды используют двояко: с их помощью можно измерять внутриклеточную концентрацию обычных ионов, таких, как ионы Н
    +
    , Na
    +
    , K
    +
    , С1
    -
    , Са
    2+- и Mg
    2+
    . Они могут быть использованы и для инъекции молекул в клетки.
    Принцип измерения концентрации ионов микроэлектродом тот же, что и в рН-метре. Стремление ионов диффундировать по градиенту концентрации может быть уравновешено приложением электрического поля противоположной направленности: чем выше градиент концентрации, тем выше значение электрического поля. Величина электри-

    197
    Рис. 4-32
    . Для измерения внутриклеточной концентрации ионов можно использовать ион-селективный электрод.
    А.
    Схема эксперимента.
    Б.
    Конструкция микроэлектрода, избирательного для К
    +
    . Обычно кончик ион-селективного внутриклеточного электрода выполнен из специального стекла либо заполнен особым органическим соединением, проницаемым для определенных ионов. Остальная часть трубки заполнена водным раствором ионов данной концентрации и содержит металлический проводник, присоединенный к одной из клемм вольтметра. Подобным образом другая клемма соединена со стеклянным стандартным микроэлектродом с открытым кончиком, содержащим обычный злектропроводящий раствор.
    Оба электрода вводят сквозь плазматическую мембрану в исследуемую клетку. Напряжение на вольтметре соответствует разнице потенциалов на селективном барьере и отражает содержание ионов в клетке (см. текст). Обычно крупные клетки прокалывать микроэлектродом проще; при диаметре клетки менее 10 мкм применение данного метода усложняется. ческого поля, необходимого для удержания градиента концентрации в стабильном состоянии, позволяет судить о величине градиента концентрации ионов. Для определения концентрации специфического иона необходимо создать преграду из материала, проницаемого только для данного иона, и поместить эту преграду между раствором известной концентрации и тем раствором, в котором измеряется содержание данного иона. Разность потенциалов на селективно проницаемом барьере в условиях отсутствия электрического поля может использоваться как мера соотношения концентрации определенного иона по обе стороны барьера (см. разд. 6.4.15). На практике кончик микроэлектрода заполняют соответствующим органическим соединением, создавая барьер, селективно проницаемый для определенного иона. Данный микроэлектрод и стандартный микроэлектрод затем вводят внутрь клетки, как показано на рис. 4-32.
    В последнее время микроэлектродную технику стали использовать для изучения транспорта ионов через специализированные белковые каналы (именуемые также ионными каналами), содержащиеся в небольших участках плазматической мембраны. В этом случае необходим стеклянный микроэлектрод с несколько более толстым кончиком. Его не вводят в плазматическую мембрану, а плотно и мягко прижимают к ней
    (рис. 4-33). Это позволяет регистрировать электрические характеристики небольшого участка мембраны, прилегающего к кончику микроэлектрода, который прикасается к клетке или находится на небольшом расстоянии от нее (рис. 4-34). Данный метод известен как
    «пэтч-регистрация»
    (регистрация в данном участке). Его применение произвело настоящую революцию в исследовании ионных каналов. Это единственный метод клеточной биологии, который дает возможность изучать функцию одиночной белковой молекулы в реальном времени; мы вернемся к рассмотрению данного вопроса в гл. 6.
    4.2.3. Быстрые изменения концентрации внутриклеточных ионов можно измерять с помощью светоизлучающих
    индикаторов [16]
    Электроды, чувствительные к определенным ионам, позволяют измерять их концентрацию только в одной точке на клеточной поверхности. Если же ионы представлены в клетках в низкой концентрации, например
    Рис. 4-33.
    Микропипетки, используемые для «пэтч»-регистрации. Показано, как клетка - палочка из глаза саламандры - удерживается присасывающей пипеткой, а стеклянная пипетка с тонким кончиком прижата к клетке; стекло плотно соприкасается с плазматической мембраной и выполняет функцию микроэлектрода. (Из Т. D. Lamb, H.R. Mattews, V. Torre, J. Physiol, 37, 315-349, 1986.)

    198
    Рис. 4-34.
    Четыре стандартных варианта «пэтч»-регистрации. Отверстие стеклянной регистрирующей пипетки сперва прижимают к клеточной мембране, создавая плотный контакт
    (вверху).
    Величину тока проходящего через пипетку в данном участке мембраны можно определить, если участок мембраны сохраняет контакт с клеткой
    (А);
    участок мембраны отделен от клетки и цитоплазматическая поверхность этого участка обнажена (6); мембрана разрушена при мягком всасывании и электрод напрямую сообщается с внутренним содержимым клетки. Вариант, представленный в правой части рисунка
    (Г),
    позволяет регистрировать электрические характеристики клетки, как при использовании внутриклеточного электрода. В данном случае можно изменить химические условия в клетке за счет введения определенных веществ, диффундирующих в цитоплазму через сравнительно толстую регистрирующую пипетку. Конфигурация
    Г
    возникает из конфигурации 5, когда пипетка отделяется от клетки и соприкасающийся с электродом участок мембраны как бы затыкает пипетку. В случае
    Г
    с электродом, как правило, соприкасается не цитоплазматическая, а наружная поверхность мембраны (сравните с
    Б).
    ионы Са
    2+
    , показания таких электродов зачастую оказываются ошибочными. Между тем изменения внутриклеточной концентрации ионов Са
    2+
    очень важно учитывать при изучении реакции клеток на внеклеточные сигналы. Такие изменения можно анализировать, используя внутриклеточные индикаторы, излучающие свет. Некоторые из этих индикаторов по своей природе являются люминесцентными (излучающими свет спонтанно), другие флуоресцентными (излучающими свет в ответ на возбуждение светом). Так, например, люминесцентный белок экварин, выделяемый из морской медузы, излучает свет в присутствии Са
    2+
    и реагирует на изменение концентрации Са
    2+
    в пределах от 0,5-10 мкМ. Если акварин инъецировать в яйцеклетку, а затем ее оплодотворить, в цитоплазме происходит изменение концентрации Са
    2+
    , регистрируемое по вспышке света, который излучает экварин (рис. 4-35). Недавно были синтезированы флуоресцентные индикаторы, прочно связывающиеся с Са
    2
    +
    Показано, что в свободном состоянии они излучают свет большей длины волны нежели связанная форма. Измеряя изменение интенсивности флуоресценции при двух длинах волн, излучаемых этим индикатором, можно определить соотношение свободной и Са-связанной фракций индикатора; благодаря этому можно точно оценить концентрацию свободных ионов Са
    2+
    . Два известных индикатора такого типа -
    квин-2
    и
    фура-2 -
    используют для постоянного наблюдения за изменениями внутриклеточной концентрации Са
    2+ в различных участках клеток с помощью флуоресцентного микроскопа. Подобные внутриклеточные индикаторы созданы для измерения внутриклеточного рН. Некоторые из них проникают в клетки за счет диффузии и их не нужно микроинъецировать; в этом случае можно под флуоресцентным микроскопом одновременно наблюдать значительное количество отдельных клеток. Создание новых типов внутриклеточных индикаторов и их использование в комплексе с современными спо-

    199
    Рис. 4-35.
    Флуоресцирующий белок, акварин, излучает свет в присутствии свободных ионов Са
    ++
    . В икринку рыбы вводили экварин, диффундировавший через цитозоль. Затем проводили искусственное оплодотворение и наблюдали за яйцом, применив метод усиления изображения. Были сделаны четыре фотоснимка со стороны точки проникновения спермия; интервал 10 с. Обнаружено появление в цитозоле волны ионов Са
    +
    , высвобождающихся из внутренних депо, которые расположены непосредственно под клеточной мембраной. Начиная от места проникновения спермия, эта волна проходит через все яйцо, как указано на диаграмме слева. (Фотографии воспроизводятся из J. С. Jinkey, L. F.
    Jafle, Е. В. Ridge-way, J.T. Reynolds J. Cell Biol., 76, 448-476, 1978 Copyright Rockefeller University Press.)
    Рис. 4-36
    . Микрофотографии участка раннего эмбриона
    Drosophila,
    который инъецирован тубулином, предварительно меченным родамином
    (тубулин - белок микротрубочек). На этой ранней стадии развития ядра объединены общей цитоплазмой, и поэтому микротрубочки метятся во всем эмбрионе.
    А.
    Микротрубочки в живом эмбрионе исходят из двух ярких пятен по обе стороны от каждого из интерфазных ядер; в центре каждого пятна центросома.
    Б.
    Этот же эмбрион через несколько минут, когда все ядра синхронно входят в митоз. Микротрубочки сохраняют контакт с центросомами, но они подверглись реорганизации и сформировали митотическое веретено. (С любезного разрешения Douglas Kel- собами обработки изображения позволяет разработать быстрые и точные методы измерения внутриклеточной концентрации многих низкомолекулярных веществ.
    4.2.4. Существует несколько методов для введения в клетки молекул, не проникающих через мембрану [17]
    Иногда возникает потребность введения в клетки молекул, не проникающих через мембрану. Это могут быть светоизлучающие индикаторы (как акварин), клеточные белки, связанные с флуоресцентной меткой, молекулы, которые оказывают влияние на поведение клеток.
    Один из подходов состоит в микроинъекции молекул в клетки с помощью стеклянной микропипетки. Это очень эффективная методика, сущность которой состоит в следующем: очищенный белок связывается с флуоресцентной меткой и затем его инъецируют в клетки. Используя соответствующий микроскоп, исследователь получает возможность следить за поведением такого белка в процессе роста и деления клеток (рис. 4-
    36).
    Микроинъекции - весьма эффективный и достаточно широко используемый метод, однако важно помнить, что в данном случае процедуре микроинъекции подвергается каждая клетка отдельно, поэтому количество клеток, которые можно наблюдать одновременно, ограничено. Существуют методы, позволяющие одновременно повышать проницаемость клеточных мембран у множества клеток, составляющих клеточные популяции. Для этого используют мощный электрический разряд или химическое воздействие, например, раствором детергента

    200
    Рис. 4-37.
    Для внутриклеточного введения веществ, не проникающих через клеточную мембрану, используют три метода.
    А.
    Вещество в клетку вводят с помощью микропипетки за счет гидравлического давления поршня или электрического заряда вводимых молекул, вследствие чего вещество проникает в клетку в виде потока ионов (метод ионофореза).
    Б.
    Клеточная мембрана под действием короткого и мощного электрического разряда (2000 в/см в течение 200 мкс) нарушается, что обеспечивает вхождение в клетку определенных веществ.
    В.
    Использовано слияние мембран.
    В начале процедуры получают пузырьки, окруженные мембранами (липосомы). Затем липосомы загружают необходимым веществом, смешивая концентрированный раствор этого вещества и суспензию фосфолипидов. Другая модификация этого метода включает на первом этапе нарушение мембраны эритроцитов, приводящее к утрате ими клеточного содержимого, и последующее помещение полученных «теней эритроцитов» в раствор нужного вещества, где происходит их заполнение и затягивание плазматических мембран. Оба вида носителей (как липосомы, так и «тени эритроцитов») можно вводить в клетки-мишени за счет слияния мембран под действием определенных вирусных белков (синтезируемых вирусом для облегчения проникновения в клетки). низкой концентрации. Электрический разряд создает в плазматической мембране большие поры без повреждения внутриклеточных мембран. Эти поры остаются открытыми в течение нескольких минут и даже часов в зависимости от типа клеток и интенсивности электрического воздействия.
    Через эти поры даже макромолекулы могут быстро входить в цитозоль или покидать его. При ограниченном воздействии мембрана у значительной части клеток восстанавливается и клетки выживают. Третий метод введения в клетки крупных молекул состоит в слиянии частиц, окруженных мембраной и содержащих необходимые молекулы, с плазматической мембраной клетки. Все три метода широко применяются в клеточной биологии (рис. 4-37).

    201
    Заключение
    Измерение концентрации и распределения неорганических ионов и других низкомолекулярных веществ в клетках необходимо выполнять
    на интактной живой ткани. Весьма эффективен для этого ядерный магнитный резонанс (ЯМР). ЯМР представляет собой полностью
    неинвазивный метод, он используется для измерения относительной концентрации многих малых молекул, но, к сожалению, его применение
    требует значительного количества образца. Для определения концентрации специфических ионов в отдельных клетках или в отдельных частях
    клеток можно применять флуоресцентные индикаторные красители. Стеклянные микроэлектроды незаменимы для измерения нe только
    электрических потенциалов и потока ионов через плазматическую мембрану; с их помощью удается определять концентрацию специфических
    внутриклеточных ионов. Микроэлектроды можно использовать и для инъекции в клетки молекул, не проникающих через мембраны.
    Альтернативные подходы состоят во временном повышении проницаемости мембран или в слиянии клеток с частицами, окруженными
    мембранами и содержащими макромолекулы.
    4.3. Разделение клеток и их культивирование [18]
    Структуру органелл и крупные молекулы можно изучать под микроскопом; для локализации специфических молекул в клетке разработаны эффективные методы окрашивания. Однако, чтобы разобраться в молекулярных основах клеточной организации, необходим детальный биохимический анализ. К сожалению, биохимические методы предполагают использование значительного количества клеток и в процессе исследования клетки разрушаются. Если в качестве образца для биохимического анализа использовать кусочек ткани, то после разрушения будет получена смесь фрагментов различных клеток. И если ткань образована клетками разного типа, что скорее является правилом, чем исключением, то разобраться в этой смеси будет просто невозможно. Пытаясь извлечь максимум информации о всех клетках, составляющих ткани, клеточные биологи разработали методы разделения тканей на клетки и методы выделения отдельных типов клеток. Полученную относительно гомогенную популяцию клеток можно подвергать анализу непосредственно либо предварительно размножив их путем культивирования.
    4.3.1. Клетки можно выделить из тканей и разделить на различные типы [19]
    Первый этап выделения клеток одного типа из ткани, содержащей различные их типы, состоит в превращении ткани в суспензию отдельных клеток. Это достигается разрушением внеклеточного матрикса и межклеточных контактов, удерживающих клетки. Обычно самый высокий выход жизнеспособных клеток получают из эмбриональных тканей или тканей новорожденных. В этом случае процедура разделения клеток включает обработку ткани протеолитическими ферментами (такими, как трипсин и коллагеназа) и соединениями, связывающими (или
    хелатирующими)
    Са
    2+
    (такими, как этилендиаминтетрауксусная кислота - ЭДТА), определяющими адгезию клеток. Затем, подвергнув ткани мягкому механическому разрушению, их разделяют на отдельные клетки.
    Для фракционирования смешанной суспензии клеток на отдельные типы используют несколько подходов. Один из них основан на различии

    1   ...   23   24   25   26   27   28   29   30   ...   79


    написать администратору сайта