Главная страница
Навигация по странице:

  • 4.4.4. С помощью электрофореза в полиакриламидном геле в присутствии додецилсульфата натрия (ДСН) можно определить размеры и субъединичный состав белков [27]

  • 4.4.5. Методом двумерного гель-электрофореза можно разделить в одном геле более 1000 белков [28]

  • Метод двумерного гель-электрофореза

  • - Фарадей (Faradey) сформулировал фундаментальные законы, описывающие электрические явления в растворах 1850 - Рунге

  • - Мартин и Синж (Martin, Synge) изобрели распределительную хроматографию, на основе которой через два года был разработан метод хроматографии на бумаге 1946 - Стайн и Мур

  • - Смитис (Smithies) для разделения белков с помощью электрофореза использовал крахмальный гель 1955 - Сэнгер

  • Молекулярная биология клетки. Том 1. Молекулярная биология клетки 2Molecular Bruce Alberts, Dennis Bray,Biology


    Скачать 25.6 Mb.
    НазваниеМолекулярная биология клетки 2Molecular Bruce Alberts, Dennis Bray,Biology
    АнкорМолекулярная биология клетки. Том 1.pdf
    Дата22.04.2017
    Размер25.6 Mb.
    Формат файлаpdf
    Имя файлаМолекулярная биология клетки. Том 1.pdf
    ТипДокументы
    #5292
    страница30 из 79
    1   ...   26   27   28   29   30   31   32   33   ...   79
    Рис. 4-45
    . Разделение молекул методом хроматографии на колонках. Образец наносят на верх цилиндрической стеклянной или пластиковой колонки, заполненной проницаемым матриксом (например, целлюлозой), погруженным в растворитель. Затем через колонку медленно прокачивают значительное количество растворителя, который собирают со дна колонки в отдельные пробирки. Различные компоненты образца проходят через колонку с различной скоростью, что и лежит в основе их фракционирования.

    213
    Рис. 4-46.
    Три типа матриксов, используемых для хроматографии. При ионообменной хроматографии
    (А)
    нерастворимый матрикс содержит ионы, задерживающие молекулы с противоположным зарядом. Для разделения молекул используются следующие матриксы: диэтиламиноэтилцеллюлоза
    (ДЭАЭ-целлюлоза) - заряжена положительно; карбоксиметилцеллюлоза (КМ-целлюлоза) и фосфоцеллюлоза - заряжены отрицательно. Силы взаимодействия между молекулами в растворе и ионообменником определяются ионной силой и рН элюирующего раствора, которые для достижения эффективного разделения можно варьировать определенным образом (как на рис. 4-47). При хроматографии по методу гель- фильтрации
    (Б)
    матрикс инертен, но содержит поры. Низкомолекулярные соединения проникают внутрь частиц матрикса. Оказавшись при этом в относительно большем объеме, они проходят через колонку медленнее. В качестве матрикса можно использовать зерна поперечно-сшитого полисахарида (декстран или агароза). Поскольку в продаже имеются полисахариды с самым различным размером пор, их можно использовать для фракционирования молекул с молекулярной массой от 500 до 5 х 10 6
    дальтон. При аффинной хроматографии
    (В)
    используется нерастворимый матрикс, ковалентно связанный со специфичными лигандами (антителами или субстратом ферментов), которые присоединяют определенный белок. Связываемые иммобилизованным субстратом молекулы фермента можно элюировать концентрированными растворами субстрата в свободной форме, а молекулы, связанные с иммобилизованными антителами, можно элюировать за счет диссоциации комплекса антитело антиген концентрированными растворами соли или растворами низкого или высокого рН. Однократная хроматография на такой колонке позволяет зачастую достигнуть очень высокой степени очистки препарата.
    На каждом этапе колоночной хроматографии содержание белка в смеси увеличивается не более, чем в 20 раз, и поэтому выделить из сложной смеси белков отдельный белок за один цикл практически невозможно. На долю каждого белка, как правило, приходится менее 1/1000 всего белка клетки, и для его очистки требуется последовательное использование нескольких различных типов колонок (рис. 4-47). Гораздо более эффективен метод
    аффинной хроматографии (хроматография по сродству).
    В основе этого метода лежат биологически важные взаимодействия, происходящие на поверхности белковых молекул. Так, при ковалентном связывании субстрата фермента с матриксом, например, с полисахаридными шариками, фермент специфически удерживается матриксом и может быть элюирован (смыт) практически в чистом виде.
    Подобным образом можно иммобилизировать короткие олигонуклеотиды ДНК определенной структуры (см. разд. 4.6.8) и использовать подобные носители для очистки ДНК-связывающих белков, опознающих данную последовательность нуклеотидов на хромосомах (см. разд. 9.1.8). С матриксом можно связать и специфические антитела; такой носитель очень удобен для очистки белков, узнаваемых этими антителами. Аффинные колонки обладают высокой степенью специфичности; за один цикл хроматографии можно добиться очень высокой степени очистки (1000-10000 раз).
    Разрешение обычной колоночной хроматографии ограничено негомогенностью матриксов (например, целлюлозы), что вызывает неравномерное протекание растворителя через колонку. Разработанные недавно хроматографические смолы (в основу которых обычно положен кремний) имеют форму мельчайших сфер от 3 до 10 мкм в диаметре, которые упакованы в специальный чехол и образуют гомогенную колонку.
    Такие колонки для
    высокоэффективной жидкостной хроматографии (ВЖХ)
    обеспечивают высокий уровень разрешения.
    Поскольку частицы носителя в колонках для ВЖХ упакованы очень плотно, в отсутствие высокого давления скорость потока через них

    214
    Рис. 4-47
    . Типичные результаты, полученные при очистке белка различными методами хроматографии. В данном случае подлежащий фракционированию клеточный экстракт сначала пропускали через колонку, заполненную ионообменной смолой
    (А).
    Затем колонку промывали и связавшиеся белки элюировали раствором, содержащим постепенно нарастающую концентрацию соли. Белки с наименьшим сродством к ионообменной смоле проходят через колонку не задерживаясь и собираются со дна колонки в первых порциях элюата. Остальные белки элюируются соответственно сродству к ионообменной смоле. Для элюирования белков, связывающихся со смолой наиболее сильно, требуется наивысшая концентрация соли. Исследуемый белок элюировался в виде узкого пика; он был выявлен по ферментативной активности. Фракции с такой активностью собирали и наносили на вторую колонку для гель-фильтрации
    (Б).
    Фракцию все еще недостаточно очищенного белка выявляли по ферментативной активности; активные фракции собирали и очищали до гомогенного состояния на колонке
    (В),
    содержащей иммобилизованный субстрат фермента. незначительна. По этой причине такие колонки обычно помещают в стальные цилиндры, соединенные со сложной системой насосов и шлангов, которые обеспечивают необходимое для высокой скорости протока давление. В традиционной колоночной хроматографии скорость протекания через колонку может быть довольно низкой (примерно один объем колонки в час), таким образом, у разделяемых растворов достаточно времени для уравновешивания с внутренним содержимым крупных частиц матрикса. В условиях ВЖХ происходит быстрое уравновешивание растворов с внутренним содержимым крошечных сфер, так что растворы, обладающие различным сродством к матриксу, эффективно разделяются даже при высокой скорости потока. Таким

    215
    Рис. 4-48
    . Детергент додецилсульфат натрия (ДСН) в ионизированной форме и восстановитель β-меркаптоэтанол. Эти два реактива используются для солюбилизации белков при ДСН-электрофорезе в полиакриламидном геле. образом, ранее для достижения плохого разделения с помощью колоночной хроматографии требовались часы, а в настоящее время благодаря ВЖХ качественное фракционирование занимает минуты. Вот почему именно этот метод чрезвычайно популярен сейчас для разделения и белков, и малых молекул.
    4.4.4. С помощью электрофореза в полиакриламидном геле в присутствии додецилсульфата натрия (ДСН) можно
    определить размеры и субъединичный состав белков [27]
    Белки обычно несут суммарный положительный или отрицательный заряд, обусловленный наличием на их поверхности положительно или отрицательно заряженных групп аминокислот. Если белковые молекулы поместить в электрическое поле, они начинают перемещаться со скоростью, которая определяется их суммарным зарядом, а также формой и размерами. Этот феномен лежит в основе
    электрофореза - метода
    разделения смесей белков в свободных водных растворах и в твердом пористом матриксе, в качестве которого можно использовать крахмал.
    В середине 60-х годов был разработан модифицированный метод электрофореза - электрофорез
    в полиакриламидном геле в
    присутствии додецилсульфата натрия (ДСН-ПААГ).
    Этот метод был существенным шагом вперед по сравнению с обычными методами анализа белков, известными к тому времени. При использовании данного метода белки мигрируют в инертном матриксе - полиакриламидном геле с высоким содержанием поперечных сшивок. Обычно гель готовят полимеризацией мономеров непосредственно перед использованием. Размеры пор геля могут быть подобраны произвольно с тем, чтобы гель мог замедлить миграцию определенных молекул. При этом белки находятся в растворе, содержащем мощный, отрицательно заряженный детергент -
    додецил-сульфат натрия
    или
    ДСН
    (SDS) (рис. 4-48).
    Связываясь с гидрофобными участками белковой молекулы, этот детергент вызывает развертывание белковых молекул в длинные вытянутые цепи. Развертываясь, отдельные белковые молекулы освобождаются из комплексов с белками или молекулами липидов и солюбилизируются в растворе детергента. В качестве восстанавливающего агента обычно добавляют меркаптоэтанол (рис. 4-48), разрушающий в белках связи S-S. Это дает возможность анализировать полипептиды, образующие мультисубъединичные молекулы.
    Что же произойдет, если смесь белков, растворенных в ДСН, подвергнуть электрофорезу в блоке полиакриламидного геля. Каждая молекула белка связывает значительное количество негативно заряженных молекул детергента, общий заряд которых превосходит общий заряд белка. По этой причине белок после того, как будет приложено напряжение, начнет двигаться в направлении положительного электрода. Белки одного размера ведут себя сходным образом, поскольку, во-первых, их природная структура полностью нарушена ДСН так, что их форма идентична, во-вторых, они связывают одинаковое количество ДСН и приобретают одинаковый негативный заряд. Крупные белки, обладающие большим зарядом, подвергаются действию значительных электрических сил, а также более существенному торможению. В обычных растворах эти эффекты, как правило, взаимно погашаются, но в порах полиакриламидного геля, действующего как молекулярное сито, большие белки тормозятся значительно сильнее, чем малые белки. Вследствие этого сложная смесь белков делится на ряд полос, расположенных в соответствии с их молекулярной массой. Окрасив гель красителем кумасси синим, можно выявить основные фракции полипептидов. Минорные белки идентифицируют серебрением; минимальное

    216
    Рис. 4-49
    . ДСН-электрофорез в полиакриламидном геле.
    Индивидуальные белки образуют комплекс с молекулами додецилсульфата натрия, несущими отрицательный заряд, и мигрируют через пористый гель полиакриламида в виде отрицательно заряженного комплекса ДСН-белок. Поскольку скорость передвижения в этих условиях тем выше, чем меньше размеры полипептида, этот метод может быть использован для определения приблизительной молекулярной массы полипептидной цепи, а также для изучения субъединичного состава белка.
    Рис. 4-50.
    Анализ образцов белка методом электрофореза в ДСН- полиакриламидном геле. На фотографии показан гель, использованный для выявления белков, присутствующих на последующих стадиях очистки фермента. Самая левая дорожка (дорожка 1) содержит сложную смесь белков исходного клеточного экстракта, каждая из последующих дорожек содержит белки, полученные после хроматографического фракционирования белковых образцов, анализированных на предыдущей дорожке (см. рис. 4-47). В лунку каждой дорожки на гель наносили одинаковое количество белка (10 мкг). Отдельные белки в норме проявляются в виде узких окрашенных полос; полосы расширяются, если в них присутствует слишком много белка. (С любезного разрешения Tim
    Formosa.) количество белка, выявляемое в полосе, составляет в последнем случае 10 нг. С помощью таких гелей можно идентифицировать специфический белок, если пометить его антителами, связанными с радиоактивными изотопами, ферментами или флуоресцирующими красителями. Идентификацию часто выполняют после переноса белков из геля на лист нитроцеллюлозы (посредством «блоттинга»).
    Ниже этот метод описан более подробно применительно к изучению нуклеиновых кислот (см. разд. 4.6.8). Описанный метод выявления белка назван вестерн-блоттингом.
    Метод ДСН-электрофореза белков в полиакриламидном геле значительно мощнее любого другого метода фракционирования белков из известных ранее хотя бы потому, что может быть использован для выявления любого белка независимо от его растворимости в воде. С помощью этого метода можно разделить на отдельные фракции белки мембран, белковые компоненты цитоскелета и белки, входящие в состав крупных макромолекулярных агрегатов. При использовании этого метода полипептиды разделяются строго по размеру, поэтому с его помощью можно получить информацию о субъединичном составе любого комплекса и о молекулярной массе белков, образующих этот комплекс (рис. 4-49).
    Фотография геля, который был использован для анализа последовательных этапов очистки белка, представлена на рис. 4-50.
    4.4.5. Методом двумерного гель-электрофореза
    можно разделить в одном геле более 1000 белков [28]
    Известно, что близко расположенные полосы в геле могут перекрываться. Этот эффект препятствует выявлению большого количества белков (не больше 50) с помощью одномерных методов их разделения,
    Метод двумерного гель-электрофореза,
    в котором объединены две различные процедуры разделения, позволяет идентифицировать более 1000 белков. Результаты при этом получают в виде «двумерной» белковой карты.
    При работе данным методом на первом этапе белки разделяют по их заряду. Для этого образец помещают в небольшой объем раствора, содержащего неионный (незаряженный) детергент - меркаптоэтанол, и в качестве денатурирующего агента - мочевину. В этом растворе происходит солюбилизация, денатурация и диссоциация всех без исключения

    217
    Рис.
    4-51.
    Разделение молекул белка методом изоэлектрического фокусирования. При низких значениях рН (высокое содержание ионов Н
    +
    ) карбоксильные группы белков имеют тенденцию оставаться незаряженными (—СООН), а основные, азотсодержащие группы белков полностью заряжены (например, -NH
    3
    +
    ), что обусловливает у белков суммарный положительный заряд. При высоких значениях рН карбоксильные группы заряжены отрицательно (— COO
    -
    ), а основные группы имеют тенденцию оставаться незаряженными, например (NH
    2
    ). В результате белки приобретают отрицательный суммарный заряд (см. рис. 2-8). При изоэлектрической точке белок незаряжен, поскольку положительный и отрицательный заряды уравновешены. Следовательно, если пробирку, содержащую раствор с фиксированным градиентом рН, подвергнуть действию сильного электрического поля, каждый вид белка будет перемещаться до тех пор, пока не образует узкой полосы в зоне рН, соответствующего изоэлектрической точке, как показано на рисунке. полипептидных цепей; при этом изменения заряда цепей не происходит. Диссоциированные полипептидные цепи разделяют затем методом
    изоэлектрического фокусирования,
    основанном на изменении заряда белковой молекулы при изменении рН окружающей среды. Каждый из белков может быть охарактеризован
    изоэлектрической
    точкой - значением рН, при котором суммарный заряд белковой молекулы равен нулю, и, следовательно, белок не способен перемещаться под действием электрического поля. При изоэлектрическом фокусировании белки подвергаются электрофорезу в узкой трубочке, заполненной полиакриламидным гелем, в котором с помощью специальных буферов создается градиент рН. Под действием электрического поля каждый белок перемещается в ту зону градиента, которая соответствует его изоэлектрической точке и остается в ней (рис. 4-51). Так происходит разделение белков в одном направлении двумерного гель-электрофореза.
    На втором этапе трубочка геля, содержащего разделенные белки, снова подвергается электрофорезу, на этот раз в направлении перпендикулярном тому, что на первом этапе. В этом случае электрофорез ведут в присутствии ДСН и белки разделяют по их молекулярной массе, как в одномерном ДСН-ПААГ. Исходный гель пропитывают додецил-сульфатом натрия и, поместив его на блок ДСН-ПААГ-геля, проводят электрофорез, в ходе которого каждая из полипептидных цепей мигри-
    Рис. 4-52.
    Фракционирование белков клетки
    Е. coli
    методом двумерного электрофореза в полиакриламидном геле. Каждое пятно соответствует отдельной полипептидной цепи. Сначала белки разделяли соответственно их изоэлектрическим точкам методом изоэлектрического фокусирования слева направо. Затем в присутствии ДСН их разделяли методом электрофореза сверху вниз в соответствии с молекулярной массой их субъединиц.
    Отметим, что содержание разных белков в клетке неодинаково. (С любезного разрешения Patrick O'Farrell.)

    218
    Таблица 4-9.
    Основные вехи в развитии методов хроматографии и электрофореза и в применении этих методов для разделения биологических макромолекул
    ___________________________________________________________________________________________________________________
    1833
    - Фарадей
    (Faradey) сформулировал фундаментальные законы, описывающие электрические явления в растворах
    1850 -
    Рунге
    (Rounge) разделил неорганические соединения по их дифференциальной адсорбции на бумаге, предвосхитив тем самым появление методов хроматографического разделения
    1906 -
    Цвет
    изобрел хроматографию на колонках. Он пропустил петролейные экстракты листьев растений через колонку с порошкообразным мелом
    1933
    - Тизелиус
    (Thiselius) использовал электрофорез для разделения белков в растворе
    1942
    - Мартин и Синж
    (Martin, Synge) изобрели распределительную хроматографию, на основе которой через два года был разработан метод хроматографии на бумаге
    1946 -
    Стайн и Мур
    (Stain, Moore) впервые определили аминокислотный состав белка. Первыми в качестве наполнителя в колоночной хроматографии они использовали крахмал, а позже ионообменные смолы
    1955
    - Смитис
    (Smithies) для разделения белков с помощью электрофореза использовал крахмальный гель
    1955
    - Сэнгер
    (Sanger) завершил анализ аминокислотной последовательности бычьего инсулина. Это первый белок, у которого определена полная аминокислотная последовательность
    1956
    - Ингрэм
    (Ingram) получил первые пептидные карты («фингерпринты» - «отпечатки пальцев»), показав при этом, что различия гемоглобина больных серповидноклеточной анемией и нормального гемоглобина обусловлены заменой одной-единственной аминокислоты
    1959
    - Рэймонд
    (Raymond) ввел в лабораторную практику полиакриламидный гель, который превосходит гель из крахмала при электрофоретическом разделении белков; в течение нескольких последующих лет Орнстайн и
    1   ...   26   27   28   29   30   31   32   33   ...   79


    написать администратору сайта