Главная страница
Навигация по странице:

  • 2.3. Проекции кривых линий

  • 2.3.1. Плоские кривые линии.

  • О кружность, соприкасающаяся с кривой

  • Построение касательной с помощью зеркальца.

  • Построение касательной с помощью кривой ошибок.

  • 2.3.2. Пространственные кривые линии

  • Цилиндрическая винтовая линия

  • Шагом винтовой линии называется величина перемещения точки параллельно оси при ее повороте на один полный оборот.

  • 2.4. Проекции поверхностей. Задание поверхности на чертеже Поверхностью

  • Геометрическая часть

  • Никифоров_учебное пособие. московский государственный университет дизайна и технологии


    Скачать 17.89 Mb.
    Названиемосковский государственный университет дизайна и технологии
    АнкорНикифоров_учебное пособие.doc
    Дата11.05.2017
    Размер17.89 Mb.
    Формат файлаdoc
    Имя файлаНикифоров_учебное пособие.doc
    ТипУчебное пособие
    #7451
    страница4 из 10
    1   2   3   4   5   6   7   8   9   10

    2.2.5. Взаимное положение прямых. Прямые линии в пространстве могут быть параллельными, пересекаться и скрещиваться.

    Параллельные прямые. Из свойств параллельных проекций следует, что если прямые в пространстве параллельны, то все три пары их одноименных проекций параллельны. Очевидно и обратное положение: если одноименные проекции прямых параллельны, то прямые в пространстве параллельны.

    Для определения параллельности прямых в общем случае достаточно параллельности двух пар одноименных проекций. В случае, если определяется параллельность линий уровня, то одной из двух пар параллельных проекций должна быть проекция на одноименную плоскость.

    На рис. 2.24 показаны проекции параллельных прямых a и b общего положения, где a1b1 и a2b2. На рис. 2.25 показаны две горизонтали c и d. У горизонталей фронтальные и профильные проекции всегда параллельны осям, отделяющих их от одноименных горизонтальных проекций, т. е. c2d2x12иc3d3y3. Но горизонтальные их проекции не параллельны, т. е. c1d1. Следовательно, прямые cи dне параллельны.

    Пересекающиеся прямые. Две пересекающиеся прямые лежат в одной плоскости и имеют одну общую точку. Из свойств параллельных проекций известно, что если точка лежит на прямой, то ее проекции лежат на проекциях прямой. Если точка лежит и на той и на другой прямой, т. е. в точке пересечения прямых, то ее проекция должна лежать сразу на двух одноименных проекциях прямых, а следовательно, в точке пересечения проекций прямых.

    Так, если отрезки AB и CD двух прямых пересекаются в точке K, то проекции отрезков A1B1 и C1D1 пересекаются в точке K1, являющейся проекцией точки K (рис. 2.26, а). Поэтому, если одноименные проекции прямых пересекаются в точках, лежащих на одной линии проекционной связи, то прямые в пространстве пересекаются (рис. 2.26, б).
    

    Для определения того, пересекаются прямые или нет, достаточно, чтобы это условие выполнялось для двух каких-либо проекций. Исключение составляет случай, когда одна из пересекающихся прямых является профильной уровня. В этом случае для проверки пересечения прямых необходимо построение профильной проекции.

    Пусть через точку A необходимо провести горизонталь b, пересекающую прямую a (рис. 2.27, а). Для этого через точку A2проводим b2x12 (этап 1) до пересечения с a2 в точкеK2 (рис.2.27, б). Далее с помощью линии проекционной связи на a1 находим точку K1(этап 2) и, соединяя точки A1 и K1 (этап 3), получаемb1.

    Скрещивающиеся прямые.Скрещивающиеся прямыеa и b не лежат в одной плоскости и, следовательно, не параллельны и не имеют общих точек (рис.2.28, а). Поэтому, если прямые скрещивающиеся, то хотя бы одна пара их одноименных проекций не параллельна, и точки пересечения одноименных проекций не лежат на одной линии проекционной связи (рис. 2.28, б).

    Каждая такая точка пересечения является проекцией двух точек, принадлежащих прямым; эти две точки лежат на одном проецирующем луче и называются конкурирующими.

    
    K1≡(L1)

    

    Точки K и L (рис. 2.28, а) лежат на одном горизонтально-проецирующем луче. Горизонтальные проекции точек совпадают и находятся в точке пересечения горизонтальных проекций a1 и b1 прямых. Точка Ka, точка Lb. Видно, что точка K выше точки L. Считают, что при проецировании на П1 точка K видна, а точка L - не видна (закрыта от наблюдателя точкой К).

    Точки M иN лежат на одном фронтально-проецирующем луче (рис. 2.28, б). Фронтальные проекции точек совпадают и находятся в точке пересечения фронтальных проекций прямых a2 и b2. Точка Ma, точка Nb. Точка N дальше от П2, чем точка M, т. е. ближе к глазам наблюдателя, и поэтому при проецировании на П2 точкаN видна, а точка M - не видна. Обозначения проекций невидимых точек принято заключать в круглые скобки.
    2.3. Проекции кривых линий
    Кривые линии могут быть плоскими и пространственными. Они могут быть заданы аналитически с помощью уравнений и графически с помощью чертежа. В начертательной геометрии кривые линии задают с помощью чертежа.

    Для построения проекций кривых линий необходимо знать приемы построения некоторых локальных характеристик: радиуса и центра кривизны, касательной, нормали и др.

    2.3.1. Плоские кривые линии. Плоскими называются кривые линии, все точки которых принадлежат одной единственной плоскости. Искривленность кривой характеризуется радиусом кривизны или кривизной.

    Окружность, соприкасающаяся с кривой ав данной точке M (рис. 2.29) проходит через точку M и бесконечно близкие от нее точки M1 и M2. Радиус этой окружности называется радиусом кривизны, а центр ее - центром кривизны. Кривизной (К) называется величина, обратная радиусу, т. е. K= 1/R.

    Касательной в данной точке M к кривой a (рис. 2.30) называется предельное положение секущей прямой, проведенной через точкуM, когда ее длина становится равной нулю. На рис. 2.30 проведена секущая

    MM1. Пусть точка M1 двигается вдоль кривой по направлению к точкеM. В момент совпадения точекM1 иM секущая

    становится касательной.

    Нормалью в данной точке M называется прямая, перпендикулярная к касательной.

    Центр кривизны (центр соприкасающейся окружности) всегда лежит на нормали. Касательная как с плоской, так и с пространственной кривой имеет одну точку соприкосновения. Следовательно, проекция касательной к пространственной кривой будет касательной к проекции кривой, так как будет иметь с проекцией кривой только одну точку соприкосновения.

    Рассмотрим практические способы построения касательных к плоским изображениям кривых, которые также могут быть проекциями пространственных кривых.

    Построение касательной с помощью зеркальца. К изображению кривой в данной точке ребром приставляют зеркальце. Ставят его поперек кривой и поворачивают его до тех пор, когда отражение кривой и сама кривая будут представлять собой плавную, без изломов линию. В этот момент ребро зеркальца направлено точно по нормали. Касательная будет к ней перпендикулярна.

    Построение касательной с помощью кривой ошибок. Кривой ошибок называется кривая линия, каждая точка которой строится по некоторому правилу. Только одна точка кривой ошибок отвечает необходимому условию. Все остальные точки являются ошибками.

    Пусть, например, через точкуK требуется провести касательную t к кривой l (рис.2.31). Для этого выполняем следующие действия:

    1) Через точку K проводим несколько секущих AB (A1B1,A2B2 и A3B3) и каждую делим пополам, обозначив середины секущих буквой C (C1,C2 и C3).

    2) Соединяем точки C1, C2 и C3 плавной кривой и получаем кривую ошибок m. Продолжаем m до пересечения с заданной кривой l в точке M. В точке касания длина секущей равна нулю и ее середина совпадает с точкой касания. Поэтому считаем, что точка M пересечения кривой ошибок m с заданной кривой l и есть точка касания.

    3) Точку K соединяем с M и получаем касательную t.

    Пусть через точку M кривой l необходимо построить касательную tи нормаль n (рис. 2.32).

    Последовательность построений в этом случае будет следующая:

    1) В произвольном месте чертежа проводим прямую i примерно перпендикулярно будущей касательной.

    2) Через точку Mпроводим ряд секущих a, b, c с одной и d, e, f с другой стороны от точки M, продолжая их до пересечения с прямой i.

    3) От точек A, B, C пересечения секущих a, b, c с прямой i вдоль их откладываем длины секущих MA1, MB1, и MC1 слева от прямой i и получаем точки A2, B2 и C2. Для секущих d, e, f длины MD1, ME1 и MF1 откладываем справа от прямойi и получаем точкиD2, E2 иF2.

    4) ТочкиA2, B2, C2, …, F2 соединяем плавной кривой и получаем кривую ошибок m, которая пересекается с прямой i в точке K.

    5) Соединяем точку M с точкой K прямой t, которая является секущей нулевой длины, т. е. касательной к заданной кривой l в точке M.

    6) Через точку M перпендикулярно касательной t проводим нормаль n.




    
    a

    b

    A
    


    B


    c

    C


    2.3.2. Пространственные кривые линии. Пространственные кривые линии имеют двоякую кривизну. Все точки пространственной кривой не лежат в одной плоскости. Ознакомимся, в качестве примера, с цилиндрической винтовой линией, которая имеет большое применение в технике.

    Цилиндрическая винтовая линия располагается на поверхности прямого кругового цилиндра. Она образуется при сложном движении точки. Точка движется равномерно и прямолинейно вдоль образующей цилиндра и равномерно вращается вместе с образующей вокруг оси цилиндра.

    Винтовая линия называется правой, если при своем поступательном движении от наблюдателя точка вращается по ходу часовой стрелки, и левой, если против хода часовой стрелки. Построение проекций цилиндрической винтовой линии дано на рис. 2.33.

    Пусть имеется цилиндр диаметром d, с осью i. Наметим 12 образующих цилиндра, расположенных на равных расстояниях от друг друга. Будем считать, что образующая, переходя из одного положения в другое, равномерно вращается вокруг оси i. Вверх вдоль образующей движется точка. При повороте образующей на 1/12 оборота точка перемещается вверх на 1/12 шага h. Шагом винтовой линии называется величина перемещения точки параллельно оси при ее повороте на один полный оборот.

    

    Соединяя последовательно фронтальные проекции полученных точек, строим фронтальную проекцию винтовой линии, которая представляет собой синусоиду.

    Горизонтальной проекцией винтовой линии является окружность. Если развернуть цилиндрическую поверхность вместе с нанесенной на нее винтовой линией, то вращательное движение образующей на развертке превращается в ее поступательное движение вдоль развернутой окружности основания цилиндра.

    В результате сложения двух равномерных поступательных движений вдоль развернутой окружности вправо и вдоль образующей вверх образуется прямая линия. Угол наклона развернутой винтовой линии к основанию:

    Ψ= arctg ,

    где h- шаг винтовой линии; d- диаметр образующего цилиндра.

    Угол Ψ называется углом наклона винтовой линии. Если навернуть винтовую линию обратно на цилиндр, то касательные в каждой точке винтовой линии наклонены к плоскости основания цилиндра под постоянным углом Ψ.

    Построим касательную к винтовой линии в точке M. Как было показано выше, проекция касательной к кривой линии касательна к проекции этой кривой.

    Возьмем некоторую точку M, принадлежащую винтовой линии и заданной проекциями M1 и M2, и проведем через нее касательную к винтовой линии.

    Горизонтальная проекция касательной к винтовой линии будет касательна к окружности, в которую она проецируется на П1, и перпендикулярна радиусуi1M1. При построении касательной к фронтальной проекции винтовой линии используем свойство одинакового наклона всех касательных.

    Отметим на развертке винтовой линии точку M1, соответствующую пространственной точке M, лежащей на винтовой линии. Из M1 опускаем перпендикуляр к развернутому основанию цилиндра и получаем точку M2. При этом отрезок основания O1M2 равен дуге окружности, на которую опирается часть винтовой линии от ее начала до точкиM. ОтрезокO1M2 называется подкасательной.

    Из горизонтальной проекции M1 проводим касательную к окружности и откладываем на ней отрезок, равный подкасательной O1M2, и получим точку A1 - основание касательной. Точка A1 лежит на плоскости П1, т. к. A П1. Фронтальная проекция A2этой точки лежит на оси x12. Фронтальная проекция касательной проходит через проекцииA2 и M2.

    Можно представить себе винтовую линию и на других поверхностях, например на конической поверхности, на сфере и т. д. Если вращать образующую конической поверхности и перемещать вдоль нее точку, то образуется коническая винтовая линия. Если вращать окружность вокруг своей оси и вдоль нее перемещать точку, то образуется сферическая винтовая линия.


    2.4. Проекции поверхностей. Задание поверхности на чертеже
    Поверхностью в геометрии называется граница, отделяющая геометрическое тело (цилиндр, конус, шар и т.д.) от внешнего пространства. На чертежах (эпюрах) изображают только точки и линии (прямые или кривые). Поэтому поверхность можно изобразить только тогда, когда она проецируется в линию или совокупность линий.

    Поверхность может быть задана с помощью модели (обувная колодка, манекен и др.), с помощью уравнения, кинематически – как след движущейся в пространстве линии, и др. В начертательной геометрии принят кинематический способ образования поверхности. Можно сказать, что поверхностьэто непрерывная совокупность последовательных положений движущейся в пространстве прямой или кривой линии. Линия, которая при своем движении образует поверхность, называется образующей.

    2.4.1. Задание поверхности с помощью определителя. Для того, чтобы задать поверхность, достаточно задать образующую поверхности и определить закон, по которому она перемещается в пространстве. Законы движения образующих могут задаваться различно:

    1) Образующая движется, пересекая какую-либо неподвижную линию, которая называется направляющей.

    2) Образующая движется, пересекая две или три направляющие линии.

    3) Образующая движется параллельно самой себе или параллельно некоторой плоскости, которая называется плоскостью параллелизма и др.

    Образующая вместе с геометрическими фигурами, определяющими ее движение, а также закон ее движения составляют определитель поверхности. Можно сказать, что определитель поверхности представляет собой совокупность независимых параметров, однозначно задающих поверхность.

    Определитель состоит из двух частей:

    1) Геометрическая часть – фигуры (точки, линии, поверхности) подвижные и неподвижные, с помощью которых образуется поверхность.

    2) Алгоритмическая часть – правило движения (закон движения) образующей по отношению к неподвижным фигурам определителя.

    В ряде случаев образующая при своем движении может деформироваться, что тоже оговаривается в алгоритмической части определителя. Основанием к составлению определителя является анализ способа образования поверхности и ее основных свойств. Каждая поверхность может быть задана разными определителями.

    Для примера рассмотрим определитель произвольной цилиндрической поверхности (рис. 2.34). Запись определителя имеет вид:

    Ф(l, a) - цилиндрическая поверхность

    (геометрическая часть) (алгоритмическая часть)

    Эта запись дается совместно с чертежом. В записи геометрической части буквой Ф обозначается поверхность, буквой l – образующая, буквой а - направляющая. Форма и положение в пространстве образующей и направляющей определяются по чертежу.

    В записи алгоритми-ческой части дается название поверхности. Для поверх-ности с данным названием общеизвестно, какое движе-ние совершает l, образуя поверхность Ф. Но можно и подробно записать характер движения образующей. В нашем случае образующая l движется параллельно самой себе и все время пересекает направляющую а. Определитель вполне определяет поверхность, т.к. с его помощью можно построить ее проекции.

    На рис. 2.35, а задан комплексный чертеж определителя цилиндрической поверхности Ф(l, a) и проекция А2 точки А, принадлежащей поверхности. Необходимо построить горизонтальную проекцию А1 точки А.




    Зная алгоритмическую часть определителя, выполним следующие построения (рис. 2.35, б):

    1) Через А2 параллельно l2 проводим и находим фронтальную проекцию В2 точки пересечения с а2 (этап 1). Этапы указаны стрелками.

    2) С помощью линии проекционной связи на а1 находим В1 (этап 2).

    3) Через точку В1 проводим параллельно l1 (этап 3).

    4) На с помощью линии связи строим А1 (этап 4).
    1   2   3   4   5   6   7   8   9   10


    написать администратору сайта