Главная страница
Навигация по странице:

  • 128. Перечислите методы и назовите условия стерилизации парентеральных растворов; изложите принцип стерилизации методом

  • Стерилизация (обеззараживание, обеспложивание

  • Механические методы стерилизации Стерилизующая фильтрация

  • Химические методы стерилизации

  • Использование консервантов

  • Физические методы стерилизации Тепловая (термическая) стерилизация.

  • Стерилизация паром под давлением.

  • Радиационная стерилизация

  • Вопросы и ответы фармтехнология. Непрерывный и периодический технологический процесс


    Скачать 6.32 Mb.
    НазваниеНепрерывный и периодический технологический процесс
    АнкорВопросы и ответы фармтехнология
    Дата15.01.2020
    Размер6.32 Mb.
    Формат файлаpdf
    Имя файла1111.pdf
    ТипДокументы
    #104171
    страница40 из 52
    1   ...   36   37   38   39   40   41   42   43   ...   52

    Стерильная фильтрация. Под стерильной фильтрацией понимают освобождение растворов термолабильных веществ от микроорганизмов, их спор, продуктов жизнедеятельности (пирогенов) с помощью глубинных и мембранных фильтровальных перегородок.
    По конструкции фильтрующего элемента различают дисковые и патронные фильтры.
    Толщина мембран – 50-120 мкм, диаметр пор 0,002-1 мкм. Мембранные фильтры могут работать под вакуумом и давлением.
    Основное действие микропористых перегородок, применяемых в этих случаях состоит в адсорбции микроорганизмов на большой поверхности, образуемой стенками пор фильтра.
    Адсорбционная способность фильтров может зависеть от вида микроорганизмов, их концентрации в растворе и условий фильтрования. Стерильной фильтрацииобязательно предшествует предварительная очистка раствора для инъекций при помощи глубинных или
    мембранных фильтров с большим диаметром пор. Префильтры задерживают механические частицы и некоторые «крупные» микроорганизмы.
    Мембранные фильтры, используемые для стерильной фильтрации, различают по материалу, способу получения пористой перегородки и ее геометрической форме, структурным особенностям пористого мембранного слоя и т.д.
    По способу получения мембраны классифицируют на ядерные (из макромономерных пленок), пленочные (из растворов и расплавов полимеров), порошковые и волокнистые.
    В зависимости от используемого материала мембранные фильтры классифицируются на следующие виды:
    1. Мембранные фильтры из природных полимеров. Исходным сырьем для их получения являются эфиры целлюлозы. Мембраны этого типа, полученные в форме ленты большой длины, выпускаются в виде плоских дисков. К недостаткам относится их хрупкость, неустойчивость ко всем органическим растворителям (кроме спиртов), ограниченная термостойкость. Поэтому данные мембраны, выпуск которых был организован ранее других, в настоящее время используются ограниченно. Для фильтрациирастворов, приготовленных на органических растворителях, используют мембраны из регенерированной целлюлозы, характеризующиеся устойчивостью в органических средах.
    2. Мембранные фильтры из синтетических полимеров. Популярность данных фильтров в настоящее время объясняется их достаточной механической прочностью,эластичностью, термоустойчивостью, стойкостью в различных жидких средах. Микрофильтры из синтетических полимеров получают фазоинверсным методом из раствораполимера или методом контролируемого вытягивания, заключающемся в равномерном растягивании во всех направлениях непористой полимерной пленки, например, полипропиленовой или фторопластовой. Мембраны из синтетических полимеров широко используются для производства патронных фильтровальных элементов с гофрированной фильтрующей перегородкой. Изготавливают различные модификации таких мембран, рассчитанных на широкий диапазон фильтруемых объектов.
    Так, фирма «MILLIрORE» выпускает мембраны из поливинил-идендифторида как с гидрофобными, так и с гидрофильными свойствами, что позволяет использовать их дляфильтрации воды, водных растворов и органических сред. Фирмой «рACE» выпускаются двухслойные мембраны из полиамида, обладающие таким уникальным свойством, как природный электро-кинетический потенциал, величина которого зависит от рH среды. Положительный заряд мембран способствует удалению из фильтруемых жидкостей отрицательно заряженных частиц. Это важно для освобождения фильтруемых сред от микроорганизмов и некоторых продуктов их жизнедеятельности, а также микровключений органической природы, т.к. большая часть этих объектов характеризуется отрицательным зарядом. Для фильтрации органических растворителейиспользуются также микрофильтры из политетрафторэтилена, характеризующиеся высокой гидрофобностью.
    Однако широкое их применение ограничивается сравнительно высокой стоимостью.
    К этой группе относятся так называемые трековые или ядерные мембраны, получаемые облучением непористой пленки полимера тяжелыми металлами, ионами или осколками деления с последующим химическим травлением треков. Эти мембраны производятся
    Институтом экспериментальной и теоретической физики АH России и фирмой
    «NUCLEрORE» в США. Ядерные фильтры имеют равномерно распределенные на его поверхности цилиндрические поры. Для того, чтобы предотвратить возможность слияния двух соседних пор, фирма «NUCLEрORE» выпускает мембраны, поры которых расположены под углом 34° друг к другу.
    Общеизвестно, что скорость течения вязкой жидкости через капилляр обратно пропорциональна его длине. Ядерные фильтры самые тонкие из всех и имеют небольшую длину капилляра.

    Ядерные фильтры разрешены Министерством здравоохранения для использования при фильтрационной очистке крови, жидких лекарственных препаратов, растворов белков, вакцин.
    3. Волокнистые мембранные фильтры. Получают спеканием полимерных волокон и могут лишь условно быть причислены к мембранным микрофильтрам, поскольку по своей структуре они приближаются к глубинным волокнистым фильтрам. Их небольшая толщина
    (

    20 мкм), к сожалению, не обеспечивает требуемой эффективностифильтрации по показателю «стерильность».
    К относительно новому типу микрофильтров принадлежат мембраны, изготавливаемые в виде полых волокон. Выпускаемые в таких системах фильтровальные элементы представляют собой пучки параллельно уложенных и смонтированных в торцевых фланцах пористых капилляров с размером от 0,1 до 0,45 мкм, что, примерно, в два раза превышает толщину обычных мембран. Hо при этом фильтрующая поверхность патрона высотой 250 мм в 2-4 раза больше поверхности традиционных гофрированных фильтр-патронов. Полые волокна получают продавливанием расплава или раствора полимера через насадку определенной формы. Данный тип микрофильтров может быть весьма перспективным для стерилизующей фильтрации, однако он требует дополнительного исследования.
    4. Hаиболее распространенными являются так называемые пленочные мембраны глубинного типа с глобулярно-ячеистыми или глобулярно-фибриллярными порами. Их получают из раствора или расплава полимера с помощью одного из трех методов: сухого, мокрого или смешанного. При сухом формовании растворитель удаляют испарением, при мокром используют осадитель, при смешанном – частичное испарение и осаждение полимера. Пористую структуру иногда получают переводом раствораполимера в отвержденное состояние через стадию образования геля. Удаляя низкомолекулярную фазу и сохраняя первоначальный объем, получают твердый продукт с высокой пористостью.
    Hаиболее распространенными материалами для изготовления мембран глубинного типа являются различные производные целлюлозы, полиамиды, поликарбонаты, политетрафторэтилен. Мембраны глубинного типа примерно в 10 раз толще сетчатых, поэтому количество адсорбированной ими жидкости будет больше. Однако преимуществом данных фильтров является более низкая скорость забивания и, следовательно, большая экономичность, чем у трековых мембран. Мембраны этого типа выпускаются практически всеми фирмами, занимающимися разработкой и производством мембранных фильтров. Их выпуск налажен в Казани, Таллине и т.д. Hаиболее известны фильтры «ВЛАДИПОР», разработанные ВHИИ синтетических смол. Институтом физико-органической химии
    Беларуссии разработаны новые микрофильтрационные мембраны для стерилизующей фильтрации из капрона.
    5. В последние годы появилось большое количество композитных керамических мембран, получаемых методом порошковой металлургии. Керамические мембраны такого типа, как правило, представляют собой трубу с порами порядка 15 мкм, изготовленную из чистого оксида алюминия, с внутренней стороны которой методом порошковой металлургии или зольно-гелевым способом наносится селективный слой оксида алюминия толщиной 1 мкм с порами от 10 до 0,1 мкм. Керамические мембраны устойчивы в органических и водных средах при различных значениях рH, температур, при перепаде давления и подвергаются регенерации. Однако получение стерильных фильтратов ограничено из-за малой толщины селективного слоя.
    6. Металлические мембранные фильтры. К ним относятся мембраны из серебра, получаемые методом порошковой металлургии, выпускаются в форме дисков с размерами пор 5; 3,5; 0,8; 0,2 мкм. Преимуществом данных мембран является их бактериостатическое действие. Серебряные мембраны, к сожалению, являются дорогостоящими, поэтому они применяются лишь в исключительных случаях.

    Общим недостатком всех мембранных фильтров является их быстрое загрязнение микроорганизмами и вследствие этого, снижение производительности процесса.
    Предложено несколько способов повышения эффективности фильтрования:

    флокуляция микрочастиц;

    применение ультразвука;

    использование префильтров и фильтров с анизотропной структурой.
    Флокуляция микрочастиц происходит благодаря присутствию электрических зарядов на поверхности частиц. Укрупненные флокулы легко задерживаются на поверхности мембраны; кроме того, концентрационный слой, образованный из них способен задерживать частицы меньших размеров, чем сами флокулы. Подобное взаимодействие происходит между противоположно заряженными частицами и материалом мембраны.
    Применение ультразвука разрушает концентрационный слой на поверхности мембраны, при этом производительность мембран со временем снижается незначительно, что повышает эффективность процесса очистки.
    Перспективным направлением борьбы с быстрым забиванием пор является использвание префильтра, серии последовательно расположенных мембран с постепенно уменьшающимися размерами пор, а также применение фильтров с анизотропной структурой.
    Для предотвращения образования осадка на мембране и закупоривания пор может быть использован метод создания псевдоожиженного слоя над поверхностью фильтра. Для этой цели предложено использовать полистирольные или стеклянные шарики с диаметром 0,3-
    0,7 мм, при этом проницаемость фильтрата возрастает в два раза.
    Существенно повысить производительность процесса позволяет создание тангенциального потока у поверхности фильтра, например, за счет вращения фильтрующего элемента.
    Для стерилизующей фильтрации жидких лекарственных препаратов более предпочтительно использовать фильтрование под давлением, чем вакуумное.
    Создание давленияпозволяет повысить производительность процесса, предотвращает подтеки внутри системы и направляет конечный стерильный продукт непосредственно в приемныйсборник, предупреждая испарение растворителя.
    Бактериальные фильтры. К бактериальным фильтрам относятся так называемые керамические свечи, которые имеют вид полых цилиндров из неглазированного фарфора, открытых с одного конца. Их получают спеканием керамических порошков с добавлением связывающих веществ и пластификаторов. Данные фильтры имеют размер пор 5-7 мкм.
    Фильтрование через них проводят двояко: либо жидкость вводят внутрь фильтра и она, просачиваясь через пористые стенки, вытекает в стерильный сосуд (свечи Шамберлена), либо наоборот, жидкость просачивается через стенки внутрь свечи и оттуда она выводится наружу (свечи Беркефельда). Свечи работают под вакуумом (по типу воронки Бюхнера).
    Отечественной промышленностью выпускаются керамические свечи – фильтры ГИКИ
    (разработанные в Государственном институте керамических изделий) разнойпористости.
    Для предварительного фильтрования применяются фильтры Ф
    1
    и Ф
    2
    (размер пор 4,5-7 мкм и 2,5-4,5 мкм соответственно); для стерилизации – Ф
    11
    (0,9 мкм), который задерживает микроорганизмы и бактериальные споры. В связи с прорастанием фильтров (засасывание микроорганизмов внутрь свечи) необходима их периодическая очистка прокаливанием с одновременной стерилизацией сухим паром при температуре 160-170°С в течение 1 часа.
    Стеклянные фильтры, представляют собой пластинки, сваренные из стеклянных зерен. фильтры с большей величиной пор используются для предварительной фильтрации.
    Стеклянный фильтр N 5 с размером пор 0,7-1,5 мкм, работающий под вакуумом, применяется для стерильной фильтрации.

    К группе бактериальных глубинных фильтров можно отнести фильтры Зейтца, а из отечественных – фильтр Сальникова. Фильтрующей перегородкой служат асбестовые пластинки диаметром 300 мм.
    Чистота раствора для инъекций во время фильтрования может контролироваться с помощью специальных счетчиков частиц проточного или периодического типа. После получения удовлетворительных результатов чистоты раствора по всем показателям он передается на стадию наполнения ампул или флаконов.
    Фильтр Сальникова 1, 2 – крышка; 3 – рама; 4 – сетка; 5, 7 –
    штуцер; 6 – шпилька; 8 – гайка

    128. Перечислите методы и назовите условия стерилизации
    парентеральных растворов; изложите принцип стерилизации методом
    фильтрования, характеристику оборудованию и фильтрующим материалам.
    В технологии лекарственных форм промышленного производства в настоящее время используют 3 группы методов стерилизации:

    Механические

    Химические

    Физические
    Стерилизация (обеззараживание, обеспложивание) - совокупность физических, химических и механических способов освобождения от вегетативных и покоящихся форм микроорганизмов.
    ГФ ХI издания определяет стерилизацию как процесс умерщвления в объекте или удаления из него микроорганизмов всех видов, находящихся на всех стадиях развития.
    Поскольку к производству стерильных лекарственных форм предъявляют высокие требования по микробиологической чистоте
    (надежность стерильных инъекционныхпрепаратов должна быть не ниже 10–6), то обеспложиванию подвергаются не только готовый продукт, но и используемое оборудование, вспомогательные материалы, фильтры, растворители, исходные вещества.
    Выбор того или иного способа стерилизации должен основываться на экономических соображениях и технологичности обработки, включая возможность ее автоматизации. От правильно подобранного метода стерилизации зависит качество производимой стерильной продукции.
    В технологии лекарственных форм промышленного производства в настоящее время используют 3 группы методов стерилизации:

    Механические
    Химические
    Физические
    Механические методы стерилизации
    Стерилизующая фильтрация. Микробные клетки и споры можно рассматривать как нерастворимые образования с очень малым (1-2 мкм) размером частиц. Подобно другим включениям, они могут быть отделены от жидкости механическим путем –
    фильтрованием сквозь мелкопористые фильтры. Этот метод стерилизации включен в ГФ ХI для стерилизации термолабильных растворов.
    По механизму действия фильтрующие перегородки, используемые для стерильной фильтрации, подразделяют на глубинные и поверхностные (мембранные) с размером пор не более 0,3 мкм.
    Стерилизующая фильтрация имеет преимущества по сравнению с методами термической стерилизации. Для многих растворов термолабильных веществ (апоморфина гидрохлорид, викасол, барбитал натрия и другие) он является единственно доступным методом стерилизации. Метод весьма перспективный в производстве глазных капель.
    Химические методы стерилизации
    Эти методы основаны на высокой специфической (избирательной) чувствительности микроорганизмов к различным химическим веществам, что обусловливается физико- химической структурой их клеточной оболочки и протоплазмы. Механизм антимикробного действия многих таких веществ еще не достаточно изучен. Считают, что некоторые вещества вызывают коагуляцию протоплазмы клетки, другие – действуют как окислители, ряд веществ влияет на осмотические свойства клетки, многие химические факторы вызывают гибель микробиологической клетки благодаря разрушению ферментной системы.
    Основой любого варианта химической стерилизации является взаимодействие бактерицидного вещества с компонентами микробной клетки или споры.
    Химическая стерилизации подразделяется на стерилизацию растворами (веществами) и стерилизацию газами (газовая стерилизация).
    Использование консервантов. Добавление консервантов условно можно отнести к методам химической стерилизации. Введение консервантов в растворы проводится в тех случаях, когда нельзя гарантировать сохранение стерильности. При этом возможно снижение температуры стерилизации или сокращение времени ее проведения.
    Физические методы стерилизации
    Тепловая (термическая) стерилизация. В настоящее время монопольное положение среди возможных методов стерилизации в фармацевтическом производстве занимает тепловая стерилизация.
    В зависимости от температурного режима тепловая стерилизация подразделяется на: паром под давлением (автоклавирование); текучим паром; тиндализацию; воздушную.
    Стерилизация паром под давлением. Автоклавирование – это стерилизация растворов, устойчивых к нагреванию, паром под давлением 1,1 атм при температуре 119-121°С. В данных условиях погибают не только вегетативные, но и споровые микроорганизмы за счет коагуляции белка клетки.

    Устройство парового стерилизатора АП-7 1 – корпус; 2 – крышка; 3 – теплоизоляция; 4 – стерилизационная камера; 5 – клапан предохранительный; 6 – пульт управления; 7 – полка; 8 – подача острого пара
    Радиационная стерилизация. Лучистая энергия губительно действует на клетки живого организма, в том числе и на различные микроорганизмы. Принцип стерилизующего эффекта этих излучений основан на способности вызывать в живых клетках при определенных дозах поглощенной энергии такие изменения, которые неизбежно приводят их к гибели за счет нарушения метаболических процессов и коагуляции белка.
    Источником ионизирующих γ-излучений служат долгоживущие изотопы
    60
    Со
    27
    ,
    137
    Cs
    55
    , ускорители электронов прямого действия и линейные ускорители электронов. Для бактерицидного эффекта достаточно от 15 до 25 кГр, причем верхний предел необходим для инактивации споровых форм.
    В настоящее время накоплен большой опыт применения этого метода, точно установлены типичные дозы излучения, необходимые для надежной стерилизации, разработано радиационное оборудование для высокопроизводительного процесса стерилизации, решены вопросы безопасности работы установок для обслуживающего персонала.
    Этот метод по экономическим показателям превосходит асептическое изготовление растворов со стерильной фильтрацией, но несколько уступает тепловой стерилизации.
    Однако, в будущем может приблизиться к ней из-за неизбежного снижения относительной стоимости изотопов, которые являются побочным продуктом атомной энергетики.
    СТЕРИЛИЗАЦИЯ ФИЛЬТРОВАНИЕМ (СМ,ВОПРОС 133)

    1   ...   36   37   38   39   40   41   42   43   ...   52


    написать администратору сайта