Главная страница
Навигация по странице:

  • Антигены обладают

  • Антигены бактерий и вирусов

  • Строение молекулы иммуноглобулина. Классы иммуноглобулинов, их характеристика, структура и функции. Антителообразование: первичный и вторичный ответы.

  • Природа иммуноглобулинов.

  • Существует пять классов иммуноглобулинов у человека

  • 2. Иммуноглобулины М включают в себя два субкласса: IgM1 и IgM2.

  • Выделяют латентную, логарифмическую, стацио­нарную фазу и фазу снижения.

  • Схема Th 1 ответа. Эффекторы клеточного ответа.

  • Микробиология. Общая микробиология


    Скачать 476.77 Kb.
    НазваниеОбщая микробиология
    АнкорМикробиология
    Дата13.05.2021
    Размер476.77 Kb.
    Формат файлаdocx
    Имя файлаEKZ_MIKRA__MOYa_ZhIZN_NE_BUDET_PREZhNEJ.docx
    ТипДокументы
    #204302
    страница11 из 18
    1   ...   7   8   9   10   11   12   13   14   ...   18

    Антигены: определение, строение, основные свойства. Антигены бактерий и вирусов.

    Антиген – это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознаётся его иммунной системой и вызывает иммунные реакции, направленные на его устранение.

    Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью.

    Антигенность. Под антигенностью понимают потенциаль­ную способность молекулы антигена акти­вировать компоненты иммунной системы и специфически взаимодействовать с фактора­ми иммунитета (антитела, клон эффекторных лимфоцитов). Иными словами, антиген дол­жен выступать специфическим раздражителем по отношению к иммунокомпетентным клет­кам. При этом взаимодействие компоненты иммунной системы происходит не со всей молекулой одновременно, а только с ее не­большим участком, который получил название «антигенная детерминанта», или «эпитоп».

    Чужеродность является обязательным усло­вием для реализации антигенности. По этому критерию система приобретенного иммунитета дифференцирует потенциально опасные объ­екты биологического мира, синтезированные с чужеродной генетической матрицы. Понятие «чужеродность» относительное, так как имму-нокомпетентные клетки не способны напря­мую анализировать чужеродный генетический код. Они воспринимают лишь опосредованную информацию, которая, как в зеркале, отражена в молекулярной структуре вещества.

    Иммуногенность — потенциальная способ­ность антигена вызывать по отношению к себе в макроорганизме специфическую за­щитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы: 1. Молекулярные особенности антигена; 2. Клиренс антигена в организме; 3. Реактивность макроорганизма.

    К первой группе факторов отнесены природа, химический состав, молекулярный вес, струк­тура и некоторые другие характеристики.

    Иммуногенность в значительной степени за­висит от природы антигена. Важна также оптическая изомерия аминокислот, составляющих молекулу белка. Большое значение имеет размер и молекулярная масса антигена. На степень иммуногенности также оказыва­ет влияние пространственная структура анти­гена. Оказалась также существенной стерическая стабильность молекулы антигена. Еще одним важным условием иммуно­генности является растворимость антигена.

    Вторая группа факторов связана с динамикой поступления антигена в организм и его выведе­ния. Так, хорошо известна зависимость иммуногенности антигена от способа его введения. На иммунный ответ влияет количество пос­тупающего антигена: чем его больше, тем более выражен иммунный ответ.

    Третья группа объединяет факторы, опреде­ляющие зависимость иммуногенности от со­стояния макроорганизма. В этой связи на пер­вый план выступают наследственные факторы.

    Специфичностьюназывают способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу. Это свойство обуслов­лено особенностями формирования иммунно­го ответа — необходима комплементарность рецепторного аппарата иммунокомпетентных клеток к конкретной антигенной детерминанте. Поэтому специфичность антигена во многом определяется свойствами составляющих его эпитопов. Однако при этом следует учитывать условность границ эпитопов, их структурное разнообразие и гетерогенность клонов антигенреактивных лимфоцитовой специфичности. В результате этого организм на антигенное раз­дражение всегда отвечает поликлональными им­мунным ответом.
    Антигены бактерий и вирусов

    Бактериальные антигены. Стенка (наружная мембрана) бактериальной клетки значительно плотнее, чем мембрана животных клеток. В случае грамотрицательных бактерий в ней содержится ЛПС; некоторые виды бактерий образуют еще и поверхностную полисахаридную капсулу, а другие способны экскретировать полисахариды (например, декстраны). Все это служит источником полисахаридных антигенов микрорганизма. Если бактерии или простейшие подвижны, то антигеном может быть белок жгутиков, а в других случаях (гонококки) – белок пилей, также выходящих на клеточную поверхность. Кроме поверхностных (обычно – протективных) антигенов, в бактериях имеются и глубоко лежащие (например, нуклеопротеины, белки клеточных органелл, некоторые ферменты). Они также вызывают образование антител, но обычно к протективным не относятся, хотя возможны и исключения, когда тот или иной белок является фактором патогенности. Ввиду значительных различий по свойствам между капсульными полисахаридами и ЛПС – с одной стороны – и белковыми антигенами – с другой, удобно рассматривать первую группу антигенов особо.

    Классические антигенные белки – это анатоксины (дифтерийный, столбнячный и др.).

    Вирусы – чрезвычайно гетерогенная группа возбудителей инфекционных заболеваний. Инфекционные частицы (вирионы) различных вирусов обладают различной степенью сложности, различным размером, различными молекулярными механизмами репликации (в частности, одни из них содержат ДНК, другие – РНК). Особенности вирусных инфекций создают большое разнообразие во взаимоотношениях между возбудителями и иммунной системой.

    Все вирусные антигены имеют белковую природу; среди них – гликопротеины (обычно – поверхностные), фосфопротеины, нуклеопротеины. Чаще всего протективными являются поверхностные в вирионе гликопротеины, хотя образуемые в ходе иммунного ответа антитела направлены против многих белков, в том числе и расположенных в нуклеокапсиде, "в глубине" вириона.

    Принципиальная, отличительная от других возбудителей особенность репродукции вирусов заключается в том, что не все белки, синтез которых индуцируется в инфицированной клетке, входят затем в состав вириона. Часть из них является вспомогательными, обеспечивающими процесс репродукции. Тем не менее, они также могут попадать во внеклеточную среду и служить иммунизирующим материалом.

    У большинства вирусов имеются суперокапсидные – поверхностные оболочечные, белковые и гликопротеидные АГ (например, гемагглютинин и нейраминидаза вируса гриппа), капсидные – оболочечные и нуклеопротеидные (сердцевинные) АГ.

    Все вирусные антигены – Т-зависимые.


    1. Строение молекулы иммуноглобулина. Классы иммуноглобулинов, их характеристика, структура и функции. Антителообразование: первичный и вторичный ответы.

    Природа иммуноглобулинов. В ответ на введение антигена иммунная систе­ма вырабатывает антитела — белки, способные специфически со­единяться с антигеном, вызвавшим их образование, и таким образом участвовать в иммунологических реакциях. Относятся ан­титела к γ-глобулинам, т. е. наименее подвижной в электричес­ком поле фракции белков сыворотки крови. В организме γ-глобулины вырабатываются особыми клетками — плазмоцитами. γ-глобулины, несущие функции антител, получили название иммуноглобули­нов и обозначаются символом Ig. Следовательно, антитела — это иммуноглобулины, вырабатываемые в ответ на введение анти­гена и способные специфически взаимодействовать с этим же антигеном.

    Функции. Первичная функция состоит во взаимодсйствии их активных центров с комплементарными им де­терминантами антигенов. Вторичная функция состоит в их способности:

    • связывать антиген с целью его нейтрализации и элиминации из организма, т. е. принимать участие в формировании защи­ты от антигена;

    • участвовать в распознавании «чужого» антигена;

    • обеспечивать кооперацию иммунокомпетентных клеток (мак­рофагов, Т- и В-лимфоцитов);

    • участвовать в различных формах иммунного ответа (фагоци­тоз, киллерная функция, ГНТ, ГЗТ, иммунологическая то­лерантность, иммунологическая память).

    Структура антител. Белки иммуноглобулинов по химическому составу относятся к гликопротеидам, так как состоят из проте­ина и Сахаров; построены из 18 аминокислот. Имеют видовые отличия, связанные главным образом с набором аминокислот. Их молекулы имеют цилиндрическую форму, они видны в электронном микроскопе. До 80 % иммуноглобулинов имеют константу седиментации 7S; устойчивы к слабым кисло­там, щелочам, нагреванию до 60 °С. Выделить иммуноглобули­ны из сыворотки крови можно физическими и химическими ме­тодами (электрофорез, изоэлектрическое осаждение спиртом и кислотами, высаливание, аффинная хроматография и др.). Эти методы используют в производстве при приготовлении иммуно­биологических препаратов.

    Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD. Иммуноглобулины М, G, А имеют под­классы. Например, IgG имеет четыре подкласса (IgG,, IgG2, IgG3, IgG4). Все классы и подклассы различаются по аминокис­лотной последовательности.

    Молекулы иммуноглобулинов всех пяти классов состоят из полипептидных цепей: двух одинаковых тяжелых цепей Н и двух одинаковых легких цепей — L, соединенных между собой дисульфидными мостиками. Соответственно каждому классу иммуноглобулинов, т.е. М, G, A, E, D, разли­чают пять типов тяжелых цепей: μ (мю), γ (гамма), α (альфа), ε (эпсилон) и Δ (дельта), различающихся по антигенности. Легкие цепи всех пяти классов являются общими и бывают двух типов: κ (каппа) и λ (ламбда); L-цепи иммуноглобулинов различных классов могут вступать в соединение (рекомбинироваться) как с гомологичны­ми, так и с гетерологичными Н-цепями. Однако в одной и той же молекуле могут быть только идентичные L-цепи (κ или λ). Как в Н-, так и в L-цепях имеется вариабельная — V область, в которой последовательность амино­кислот непостоянна, и константная — С область с постоянным набором аминокислот. В легких и тяжелых цепях различают NH2- и СООН-концевые группы.

    При обработке γ -глобулина меркаптоэтанолом разрушаются дисульфидные связи и молекула иммуноглобулина распадается на отдельные цепи полипептидов. При воздействии протеолитическим ферментом папаином иммуноглобулин расщепляется на три фрагмента: два не кристаллизующихся, содержащих детерминантные группы к антигену и названных Fab-фрагментами I и II и один кристаллизующий Fc-фрагмент. FabI- и FabII-фрагменты сходны по свойствам и аминокислотному составу и отличаются от Fc-фрагмента; Fab-и Fc-фрагменты являются компактными образованиями, соеди­ненными между собой гибкими участками Н-цепи, благодаря чему молекулы иммуноглобулина имеют гибкую структуру.

    Как Н-цепи, так и L-цепи имеют отдельные, линейно свя­занные компактные участки, названные доменами; в Н-цепи их по 4, а в L-цепи — по 2.

    Активные центры, или детерминанты, которые формиру­ются в V-областях, занимают примерно 2 % поверхности мо­лекулы иммуноглобулина. В каждой молекуле имеются две де­терминанты, относящиеся к гипервариабельным участкам Н-и L-цепей, т. е. каждая молекула иммуноглобулина может свя­зать две молекулы антигена. Поэтому антитела являются двух­валентными.

    Типовой структурой молекулы иммуноглобулина является IgG. Остальные классы иммуноглобулинов отличаются от IgG дополнительными элементами организации их молеку­лы.

    В ответ на введение любого антигена могут вырабатываться антитела всех пяти классов. Обычно вначале вырабатывается IgM, затем IgG, остальные — несколько позже

    Существует пять классов иммуноглобулинов у человека

    1. Иммуноглобулины G – это мономеры, включающие в себя четыре субкласса (IgG1; IgG2; IgG3; IgG4), которые отличаются друг от друга по аминокислотному составу и антигенным свойствам. Антитела субклассов IgG1 и IgG4 специфически связываются через Fc-фрагменты с возбудителем (иммунное опсонирование), а благодаря Fc-фрагментам взаимодействуют с Fc-рецепторами фагоцитов, способствуя фагоцитозу возбудителя. IgG4 участвует в аллергических реакциях и неспособен фиксировать комплемент.

    Свойства иммуноглобулинов G: 1) играют основополагающую роль в гуморальном иммунитете при инфекционных заболеваниях; 2) проникают через плаценту и формируют антиинфекционный иммунитет у новорожденных; 3) способны нейтрализовать бактериальные экзотоксины, связывать комплемент, участвовать в реакции преципитации.

    2. Иммуноглобулины М включают в себя два субкласса: IgM1 и IgM2.

    Свойства иммуноглобулинов М: 1) не проникают через плаценту; 2) появляются у плода и участвуют в антиинфекционной защите; 3) способны агглютинировать бактерии, нейтрализовать вирусы, активировать комплемент; 4) играют важную роль в элиминации возбудителя из кровеносного русла, активации фагоцитоза; 5) образуются на ранних сроках инфекционного процесса; 6) отличаются высокой активностью в реакциях агглютинации, лизиса и связывания эндотоксинов грамотрицательных бактерий.

    3. Иммуноглобулины А – это секреторные иммуноглобулины, включающие в себя два субкласса: IgA1 и IgA2. В состав IgA входит секреторный компонент, состоящий из нескольких полипептидов, который повышает устойчивость IgA к действию ферментов.

    Свойства иммуноглобулинов А: 1) содержатся в молоке, молозиве, слюне, слезном, бронхиальном и желудочно-кишечном секрете, желчи, моче; 2) участвуют в местном иммунитете; 3) препятствуют прикреплению бактерий к слизистой; 4) нейтрализуют энтеротоксин, активируют фагоцитоз и комплемент.

    4. Иммуноглобулины Е – это мономеры, содержание которых в сыворотке крови ничтожно мало. К этому классу относится основная масса аллергических антител – реагинов. Уровень IgE значительно повышается у людей, страдающих аллергией и зараженных гельминтами. IgE связывается с Fc-рецепторами тучных клеток и базофилов.

    Свойства иммуноглобулинов Е: при контакте с аллергеном образуются мостики, что сопровождается выделением БАВ, вызывающих аллергические реакции немедленного типа.

    5. Иммуноглобулины D – это мономеры. Функционируют в основном в качестве мембранных рецепторов для антигена. Плазматические клетки, секретирующие IgD, локализуются преимущественно в миндалинах и аденоидной ткани.

    Свойства иммуноглобулинов D: 1) участвуют в развитии местного иммунитета; 2) обладают антивирусной активностью; 3) активируют комплемент (в редких случаях); 4) участвуют в дифференцировке В-клеток, способствуют развитию антиидиотипического ответа; 5) участвуют в аутоиммунных процессах.

    Антителообразование:

    Способность к образованию ан­тител появляется во внутриутробном периоде у 20-недельного эмбриона; после рождения начинается собственная продукция иммуноглобулинов, которая увеличивается до наступления зре­лого возраста и несколько снижается к старости. Динамика об­разования антител имеет различный характер в зависимости от силы антигенного воздействия (дозы антигена), частоты воздействия антигена, состояния организма и его иммунной системы. При первичном и повторном введении антигена динамика антителообразования также различна и протекает в несколько ста­дий. Выделяют латентную, логарифмическую, стацио­нарную фазу и фазу снижения.



    В латентной фазе происходят переработка и представление антигена иммунокомпетентным клеткам, размножение клона клеток, специализированного на выработку антител к данному антигену, начинается синтез ан­тител. В этот период антитела в крови не обнаруживаются.

    Во время логарифмической фазы синтезированные антитела высво­бождаются из плазмоцитов и поступают в лимфу и кровь.

    В ста­ционарной фазе количество антител достигает максимума и ста­билизируется, затем наступает фаза снижения уровня антител. При первичном введении антигена (первичный иммунный от­вет) латентная фаза составляет 3—5 сут, логарифмическая — 7— 15 сут, стационарная — 15—30 сут и фаза снижения — 1—6 мес и более. Особенностью первичного иммунного ответа является то, что первоначально синтезируется IgM, а затем IgG.

    В отличие от первичного иммунного ответа при вторичном введении антигена (вторичный иммунный ответ) латентный период укорочен до нескольких часов или 1—2 сут, логарифми­ческая фаза характеризуется быстрым нарастанием и значитель­но более высоким уровнем антител, который в последующих фазах длительно удерживается и медленно, иногда в течение не­скольких лет, снижается. При вторичном иммунном ответе в отличие от первичного синтезируются главным образом IgG.

    Такое различие динамики антителообразования при первич­ном и вторичном иммунном ответе объясняется тем, что после первичного введения антигена в иммунной системе формирует­ся клон лимфоцитов, несущих иммунологическую память о данном антигене. После повторной встречи с этим же антиге­ном клон лимфоцитов с иммунологической памятью быстро раз­множается и интенсивно включает процесс антителогенеза.

    Очень быстрое и энергичное антителообразование при повтор­ной встрече с антигеном используется в практических целях при необходимости получения высоких титров антител при произ­водстве диагностических и лечебных сывороток от иммунизиро­ванных животных, а также для экстренного создания иммуни­тета при вакцинации.

    1. Схема Th1 ответа. Эффекторы клеточного ответа.

    Пусковым звеном в формировании клеточного типа иммунного ответа является продукция макрофагом, на территории которого идет процессинг антигена, интерлейкина ИЛ-12. События развиваются следующим образом.

    ГКГС - I макрофага презентирует пептид (антиген) Т-хелперу (CD 4 ). Под влиянием ИЛ-12, продуцируемого этим же макрофагом, Th трансформируется в Th 1. g - IFN является важнейшим из цитокинов , выделяемых Th 1. Он активирует контакт Т CD 8 с рецептором ГКГС - I макрофага, на котором представлен тот же антиген. Выделяемый Th 1 ИЛ-2 стимулирует пролиферацию таких, уже антигенспецифических Т-цитолитических лимфоцитов (Тс). Главной функцией Т с в противоинфекционной защите является уничтожение соматических клеток организма, внутри которых находится возбудитель, а на поверхности - метка, комплекс ГКГС-I - антиген патогена . При прямом контакте с такой клеткой Т с выделят гранулы, содержащие белки - перфорин , гранзим . Перфорин встраивается в мембрану соматической клетки, образует в ней каналы «поры» и может действовать как мембраноатакующий белок. Гранзим ( сериновые протеиназы ) индуцирует один из вариантов апоптоза и гибель соматической клетки вместе с находящимися в ней микробами.

    Выделяют три основные группы Т- лимфоцитов- помощники (активаторы), эффекторы, регуляторы.

    Первая группа- помощники (активаторы), в состав которых входят Т- хелперы1, Т- хелперы2, индукторы Т- хелперов, индукторы Т- супрессоров.

    1. Т- хелперы1 несут рецепторы CD4 (как и Т- хелперы2) и CD44, отвечают за созревание Т- цитотоксических лимфоцитов (Т- киллеров), активируют Т- хелперы2 и цитотоксическую функцию макрофагов, секретируют ИЛ-2, ИЛ-3 и другие цитокины.

    2. Т- хелперы2 имеют общий для хелперов CD4 и специфический CD28 рецепторы, обеспечивают пролиферацию и дифференцировку В- лимфоцитов в антителпродуцирующие (плазматические) клетки, синтез антител, тормозят функцию Т- хелперов1, секретируют ИЛ-4, ИЛ-5 и ИЛ-6.

    3. Индукторы Т- хелперов несут CD29, отвечают за экспрессию антигенов HLA класса 2 на макрофагах и других А- клетках.

    4. Индукторы Т- супрессоров несут CD45 специфический рецептор, отвечают за секрецию ИЛ-1 макрофагами, активацию дифференцировки предшественников Т- супрессоров.

    Вторая группа- Т- эффекторы. В нее входит только одна субпопуляция.

    5. Т- цитотоксические лимфоциты (Т- киллеры). Имеют специфический рецептор CD8, лизируют клетки- мишени, несущие чужеродные антигены или измененные аутоантигены (трансплантант, опухоль, вирус и др.). ЦТЛ распознают чужеродный эпитоп вирусного или опухолевого антигена в комплексе с молекулой класса 1 HLA в плазматической мембране клетки- мишени.

    Третья группа- Т-клетки- регуляторы. Представлена двумя основными субпопуляциями.

    6. Т- супрессоры имеют важное значение в регуляции иммунитета, обеспечивая подавление функций Т- хелперов 1 и 2, В- лимфоцитов. Имеют рецепторы CD11, CD8. Группа функционально разнородна. Их активация происходит в результате непосредственной стимуляции антигеном без существенного участия главной системы гистосовместимости.

    7. Т- контсупрессоры. Не имеют CD4, CD8, имеют рецептор к особому лейкину. Способствуют подавлению


    1. 1   ...   7   8   9   10   11   12   13   14   ...   18


    написать администратору сайта