Приложение 1_Эконометрика. Оценочные материалы текущего контроля успеваемости. Методические материалы по проведению процедур оценивания
Скачать 4.57 Mb.
|
Если качественная переменная имеет 4 уровня, то для её описания следует использовать: 4 фиктивные переменные 3 фиктивные переменные 2 фиктивные переменные 1 фиктивную переменную Нулевой уровень качественной переменной называется: базовым сравнительным дифференциальным свободным членом дифференциальным угловым коэффициентом ответы а) и b) верные Значения фиктивных переменных: можно изменять на противоположные нельзя изменять на противоположные Для принятия решения о разбиении выборки фиктивной переменной на части или ограничения одной общей линией регрессии используют: тест Чоу тест ранговой корреляции Спирмена метод Гуйарати тест Гольдфельда – Квандта ответы а) и с) верные Применения теста Чоу предполагает: соблюдение предпосылок о нормальном распределении остатков в кусочно-линейных моделях независимость распределений этих остатков ответы а) и b) верные Тест по теме 12. Практическая реализация методов эконометрического анализа Метод Монте-Карло это: серия численных экспериментов призванных получить эмпирические оценки степени влияния различных факторов, на некоторые зависящие от них результаты имитация выборки из генеральной совокупности численный метод решения математических задач при помощи моделирования случайных чисел метод нахождения «случайным» образом числовых значений Эконометрические компьютерные пакеты: GPSS, Statistica, EViews, PcGive, Stata SPSS, SLAM, Statistica, EViews, Gauss, PcGive SPSS, Statistica, EViews, Gauss, PcGive, Stata SPSS, SIMULA, Statistica, EViews, Gauss, PcGive Для проверки общего качества уравнения регрессии используется: линейный коэффициент множественной корреляции коэффициент эластичности индекс корреляции коэффициент детерминации Для оценки модели с помощью компьютерных программ выделяют этапы: синтеза данных, оценки и анализа модели анализа данных, оценки и анализа модели анализа данных, оценки и синтеза модели оценки данных, оценки и анализа модели Для определения гетероскедастичности используют: метод Монте-Карло тест Гольдфельда – Квандта критерий Стъюдента ответы а), b) и с) верные Для получения по МНК наилучших результатов параметров а и b необходимо выполнение: условия постоянства дисперсии случайных отклонений условия отсутствия автокорреляции условия независимости случайного отклонения от объясняющих переменных условий теоремы Гаусса - Маркова Цель оценивания эконометрической модели: получение более точных значений неизвестных параметров выборочной совокупности получение более точных значений неизвестных параметров выборочной и генеральной совокупностей получение более точного значения неизвестных параметров генеральной совокупности получить как можно более точно значения неизвестных случайных параметров Любое эконометрическое исследование начинается: с формулировки нулевой гипотезы с формулировки вида модели, исходя из соответствующей теории связи между переменными с формулировки модели парной регрессии с формулировки модели множественной регрессии Оценка наличия статистической связи между у и х дается с помощью: t- критерия Стьюдента F- критерия Фишера коэффициента корреляции коэффициента детерминации Оценка значимости уравнения регрессии в целом дается с помощью: t- критерия Стьюдента анализа дисперсии F- критерия Фишера коэффициента детерминации Тест по теме 13. Системы одновременных уравнений Если каждая из зависимых переменных у представляет собой функцию от одного и того же набора аргументов, то такую систему эконометрических уравнений называют: системой зависимых уравнений системой рекурсивных уравнений системой независимых уравнений системой взаимозависимых уравнений Для нахождения параметров каждого из уравнений системы одновременных уравнений используется: метод наименьших квадратов косвенный метод наименьших квадратов двухшаговый метод наименьших квадратов трехшаговый метод наименьших квадратов Наибольшее распространение в эконометрических исследованиях получила система: линейных уравнений взаимозависимых уравнений нелинейных уравнений зависимых уравнений Если в системе уравнений одни и те же зависимые переменные входят в правую часть одних, и в левую часть - других, то такую систему называют: системой рекурсивных уравнений системой взаимозависимых уравнений системой зависимых уравнений системой независимых уравнений Система одновременных уравнений может быть представлена в виде двух форм: структурной и неприведенной приведенной и неструктурной неприведенной и неструктурной структурной и приведенной В систему одновременных уравнений входят: только эндогенные переменные только экзогенные переменные эндогенные и экзогенные переменные среди перечисленных ответов нет верных Эндогенными переменными в системе эконометрических уравнений являются: как результативные признаки, так и признаки-факторы результативные признаки только признаки-факторы верные ответы a) и c) Признаки-факторы х в системе одновременных эконометрических уравнений: зависимые переменные независимые переменные эндогенные переменные экзогенные переменные Приведенная форма модели: система линейных уравнений, каждое из уравнений которой представляет собой зависимость эндогенных переменных от экзогенных система нелинейных уравнений, каждое из уравнений которой представляет собой зависимость экзогенных переменных от эндогенных система нелинейных уравнений, каждое из уравнений которой представляет собой зависимость эндогенных переменных от экзогенных система линейных уравнений, каждое из уравнений которой представляет собой зависимость экзогенных переменных от эндогенных С позиции идентифицируемости структурные модели подразделяются на: идентифицируемые и сверхидентифицируемые сверхидентифицируемые и неидентифицируемые идентифицируемые, сверхидентифицируемые и неидентифицируемые идентифицируемые и неидентифицируемые Система эконометрических уравнений является рекурсивной, если: зависимая переменная у одного уравнения является фактором х в другом зависимая переменная у является фактором и переменной в одном и том же уравнении одни и те же зависимые переменные в одних уравнениях входят в левую часть, а других – в правую верны ответы b) и c) Тест по теме 14. Оценивание параметров структурной модели Основными методами оценивания коэффициентов структурной модели являются: косвенный метод наименьших квадратов и метод максимального правдоподобия и метод максимального правдоподобия при ограниченной информации двухшаговый и трехшаговый метод наименьших квадратов косвенный метод наименьших квадратов, двухшаговый метод наименьших квадратов, трехшаговый метод наименьших квадратов, метод максимального правдоподобия с полной информацией и метод максимального правдоподобия при ограниченной информации Все структурные эконометрические модели делятся на: 5 классов 3 класса 2 класса 4 класса Для оценки коэффициентов идентифицируемой модели наиболее применим: двухшаговый метод наименьших квадратов косвенный метод наименьших квадратов метод максимального правдоподобия с полной информацией метод максимального правдоподобия при ограниченной информации Системы одновременных уравнений делятся на: 5 классов 2 класса 4 класса 3 класса Для оценки коэффициентов сверхидентифицируемой модели наиболее применим: двухшаговый метод наименьших квадратов косвенный метод наименьших квадратов метод максимального правдоподобия с полной информацией метод максимального правдоподобия при ограниченной информации В случае точно идентифицируемой структурной модели наиболее двухшаговый метод наименьших квадратов косвенный метод наименьших квадратов метод максимального правдоподобия с полной информацией метод максимального правдоподобия при ограниченной информации Сверхидентифицируемая структурная модель может быть: трех типов двух типов одного типа ответы а) и с) верные Наиболее эффективной процедурой оценивания систем регрессионных уравнений является: двухшаговый метод наименьших квадратов трехшаговый метод наименьших квадратов метод одновременного оценивания метод инструментальных переменных ответы с) и d) верные Под системой эконометрических уравнений обычно понимается: система одновременных, совместных уравнений система рекурсивных уравнений система взаимозависимых уравнений система независимых уравнений Вид системы одновременных уравнений имеют: все эконометрические модели не все эконометрические модели Тест по теме 15. Временные ряды Временным рядом называют зависимость между: двумя экономическими показателями тремя экономическими показателями экономическим показателем и временем двумя экономическими показателями и временем Временной ряд, отражающий закономерность и случайность развития, можно задать равенством: Y(t) = E(t) Y(t) = f(t) Y(t) = E(t) + f(t) + Af(t) Y(t) = f(t) + E(t) Основными составляющими временного ряда являются: главная тенденция, сезонные колебания главная тенденция и случайная составляющая сезонные колебания и случайная составляющая главная тенденция, сезонные колебания и случайная составляющая Основной задачей эконометрического исследования отдельного временного ряда является: выявление качественного выражения каждой из компонент и использование полученной информации для прогноза будущих значений ряда выявление количественного выражения каждой из компонент и использование полученной информации для прогноза будущих значений ряда построение модели взаимосвязи двух или более временных рядов ответы b) и с) верные Для выявления наличие той или иной неслучайной компоненты временного ряда исследуется: корреляционная зависимость между последовательными уровнями временного ряда тенденция временного ряда автокорреляция уровней ряда ответы а) и с) верные Количественно автокорреляцию можно измерить с помощью: линейного коэффициента корреляции между уровнями исходного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени выборочного коэффициента корреляции коэффициента детерминации скорректированного коэффициента По знаку коэффициента автокорреляции: нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда можно делать вывод о возрастающей или убывающей тенденции в уровнях ряда По значению коэффициента автокорреляции: можно судить о наличии линейной или близкой к линейной тенденции текущего и предыдущего уровней ряда нельзя судить о наличии линейной или близкой к линейной тенденции текущего и предыдущего уровней ряда |