основы. 4. Основы расчета теории надежности. Основы теории расчета надежности технических систем
Скачать 2.78 Mb.
|
ПРИМЕР 4.5.11. Система состоит из двух идентичных устройств, одно из которых функционирует, а другое находится в режиме ненагруженного резерва. Интенсивности отказов обоих устройств постоянны. Кроме того, предполагается, что в начале работы резервное устройство имеет такие же характеристики, как и новое. Требуется вычислить вероятность безотказной работы системы в течение 100 ч при условии, что интенсивности отказов устройств λ = 0,001 ч–1. Решение. С помощью формулы (4.5.25) получаем: P(t ) = exp(−λt ) ⋅ (1 + λt ). При заданных значениях t и λ вероятность безотказной работы системы составляет: Во многих случаях нельзя предполагать, что запасное оборудование не выходит из строя, пока его не включат в работу. Пусть λ1 — интенсивность отказов работающих образцов, а λ2 — резервных или запасных (λ2 > 0). В случае дублированной системы функция надежности имеет вид: Данный результат для k = 2 можно распространить на случай k = n. Действительно: 4.5.4.3. Надежность резервированной системы в случае комбинаций отказов и внешних воздействий В некоторых случаях отказ системы возникает вследствие определенных комбинаций отказов образцов входящих в систему оборудования и (или) из-за внешних воздействий на эту систему. Рассмотрим, например, метеоспутник с двумя передатчиками информации, один из которых является резервным или запасным. Отказ системы (потеря связи со спутником) возникает при выходе из строя двух передатчиков или в тех случаях, когда солнечная активность создает непрерывные помехи радиосвязи. Если интенсивность отказов работающего передатчика равна λ, а φ— ожидаемая интенсивность появления радиопомех, то функция надежности системы: P(t ) = exp(−(λ + ϕ)t ) + λt exp(−(λ + ϕ)t ). (4.5.28) Данный тип модели также применим в случаях, когда резерв по схеме замещения отсутствует. Например, предположим, что нефтепровод подвергается гидравлическим ударам, причем воздействие незначительными гидроударами происходит с интенсивностью λ, а значительными — с интенсивностью φ. Для разрыва сварных швов (из-за накопления повреждений) трубопроводу следует получить n малых гидроударов или один значительный. Здесь состояние процесса разрушения представляется числом ударов (или повреждений), причем один мощный гидроудар равносилен n малых. Надежность или вероятность того, что трубопровод не будет разрушен действием микроударов к моменту времени t равна: 4.5.4.4. Анализ надежности систем при множественных отказах Рассмотрим метод анализа надежности нагруженных элементов в случае статистически независимых и зависимых (множественных) отказов. Следует заметить, что этот метод может быть применен и в случае других моделей и распределений вероятностей. При разработке этого метода предполагается, что для каждого элемента системы существует некоторая вероятность появления множественных отказов. Как известно, множественные отказы действительно существуют, и для их учета в соответствующие формулы вводится параметр α. Этот параметр может быть определен на основе опыта эксплуатации резервированных систем или оборудования и представляет собой долю отказов, вызываемых общей причиной. Другими словами, параметр α можно рассматривать как точечную оценку вероятности того, что отказ некоторого элемента относится к числу множественных отказов. При этом можно считать, что интенсивность отказов элемента имеет две взаимоисключающие составляющие, т. е. λ = λ1 + λ2 , где λ1 — постоянная интенсивность статистически независимых отказов элемента; λ2 — интенсивность множественных отказов резервированной системы или элемента. Поскольку α = λ2 / λ, то λ2 = α / λ, и следовательно, λ1 = (1 − α)λ. Приведем формулы и зависимости для вероятности безотказной работы, интенсивности отказов и средней наработки на отказ в случае систем с параллельным и последовательным соединением элементов, а также систем с k исправными элементами из п и систем, элементы которых соединены по мостиковой схеме. Система с параллельным соединением элементов (рис. 4.5.13) — обычная параллельная схема, к которой последовательно подсоединен один элемент. Параллельная часть (I) схемы отображает независимые отказы в любой системе из n элементов, а последовательно соединенный элемент (II) — все множественные отказы системы. Гипотетический элемент, характеризуемый определенной вероятностью появления множественного отказа, последовательно соединен с элементами, которые характеризуются независимыми отказами. Отказ гипотетического последовательно соединенного элемента (т. е. множественный отказ) приводит к отказу всей системы. Предполагается, что все множественные отказы полностью взаимосвязаны. Вероятность безотказной работы такой системы определяется как Rр = {1 – (1 – R1)n}R2, где n — число одинаковых элементов; R1 — вероятность безотказной работы элементов, обусловленная независимыми отказами; R2 — вероятность безотказной работы системы, обусловленная множественными отказами. При постоянных интенсивностях отказов λ1 и λ2 выражение для вероятности безотказной работы принимает вид: где: t — время. Влияние множественных отказов на надежность системы с параллельным соединением элементов наглядно демонстрируется с помощью рис. 4.5.14—4.5.16; при увеличении значения параметра α вероятность безотказной работы такой системы уменьшается. Параметр α принимает значения от 0 до 1. При α = 0 модифицированная параллельная схема ведет себя, как обычная параллельная схема, а при α = 1 она действует как один элемент, т. е. все отказы системы являются множественными. Поскольку интенсивность отказов и среднее время наработки на отказ любой системы можно определить с помощью (4.3.7) и формул: с учетом выражения для Rр(t) получаем, что интенсивность отказов (рис. 4.5.17) и средняя наработка на отказ модифицированной системы соответственно равны: |