|
Подскладочный ларингит (ложный круп). Этиопатогенез, клиника, диагка. Дифдиагка. Лечение
Основные физические понятия акустики. В физическом понимании звук представляет собой механические колебания твердой, жидкой или газообразной среды, источником которых может быть любой процесс, вызывающий местное изменение давления или механическое напряжение в среде. С физиологической точки зрения под звуком понимают такие механические колебания, которые, воздействуя на слуховой рецептор, вызывают в нем определенный физиологический процесс, воспринимаемый как ощущение звука. Распространение звуковых волн в разных средах зависит от скорости звука и плотности среды, произведение которых используют для обозначения акустического сопротивления, или импеданса, среды. Скорость распространения звуковых колебаний в воздухе составляет 332 м/с, в воде — 1450 м/с.
Колебания звучащего тела можно представить как маятни-кообразные. Время, в течение которого совершается одно полное колебание, называется периодом колебания. При маятни-кообразных колебаниях в воздушной среде образуются участки сгущения (уплотнения) среды, чередующиеся с участками разрежения. В результате попеременного образования участков сгущения и разрежения возникает звуковая волна. Различают поперечные волны — в твердых телах и продольные — в воздухе и жидких средах. Одинаковые состояния звуковой волны — участки сгущения или разрежения — называются фазами. Расстояние между одинаковыми фазами называют длиной волны. Низкие звуки, при которых фазы отстоят далеко друг от друга, характеризуются большой длиной волны, высокие звуки с близким расположением фаз — небольшой (короткой).
Фаза и длина волны имеют важное значение в физиологии слуха. Так, одним из условий оптимального слуха является приход звуковой волны к окнам преддверия и улитки в разных фазах (анатомически это обеспечивается звукопроводящей системой среднего уха). Высокие звуки с небольшой длиной волны вызывают колебания невысокого столба лабиринтной жидкости (перилимфы) в основании улитки, низкие, с большей длиной волны, распространяются до ее верхушки. Это обстоятельство важно для уяснения современных теорий слуха.
К физическим характеристикам звука относятся также частота и амплитуда звуковых колебаний. Единицей измерения частоты колебаний является 1 герц (Гц), обозначающий число колебаний в секунду. Амплитуда колебаний — расстояние между средним и крайним положениями колеблющегося тела. Амплитуда колебаний (интенсивность) звучащего тела в значительной степени определяет восприятие звука.
По характеру колебательных движений звуки делятся на три группы: чистые тоны, сложные тоны и шумы. Гармонические (ритмичные) синусоидальные колебания создают чистый, простой звуковой тон (т.е. звучит тон одной частоты), например звук камертона. Негармонический звук, отличающийся от простых тональных звуков сложной структурой, называется шумом. Шумовой спектр состоит из разнообразных колебаний, частоты которых относятся к частоте основного тона хаотично, как различные дробные числа. Восприятие шума часто сопровождается неприятными субъективными ощущениями. Сложные тоны характеризуются упорядоченным отношением их частот к частоте основного тона, а ухо имеет способность анализировать сложный звук. Вообще каждый сложный звук разлагается ухом на простые синусоидальные составляющие (закон Ома), т.е. происходит то, что в физике обозначают термином «теорема (ряд) Фурье».
Способность звуковой волны огибать препятствия называется дифракцией. Низкие звуки с большой длиной волны обладают лучшей дифракцией, чем высокие с короткой волной. Явление отражения звуковой волны от встречающихся на ее пути препятствий называется эхом. Многократное отражение звука в закрытых помещениях от различных предметов носит название «реверберация». При хорошей звукоизоляции помещений реверберация слабая, например в театре, кинозале и т.д., при плохой — сильная. Явление наложения отраженной звуковой волны на первичную звуковую волну получило название «интерференция». При этом явлении может наблюдаться усиление или ослабление звуковых волн. При прохождении звука через наружный слуховой проход осуществляется его интерференция и звуковая волна усиливается.
Важное значение в звукопроведении играет явление резонанса, при котором звуковая волна одного колеблющегося предмета вызывает соколебательные движения другого (резонатор). Резонанс может быть острым, если собственный период колебаний резонатора совпадает с периодом воздействующей силы, и тупым, если периоды колебаний не совпадают. При остром резонансе колебания затухают медленно, при тупом — быстро. Важно отметить, что колебания структур уха, проводящих звуки, затухают быстро; это устраняет искажение внешнего звука, поэтому человек может быстро и последовательно принимать все новые и новые звуковые сигналы. Некоторые структуры улитки обладают острым резонансом, что способствует различению двух близкорасположенных частот.
Основные свойства слухового анализатора. К основным свойствам слухового анализатора относится его способность различать высоту (понятие частоты) звука, его громкость (понятие интенсивности) и тембр, включающий основной тон и обертоны.
Как принято в классической физиологической акустике, ухо человека воспринимает полосу звуковых частот от 16 до 20 000 Гц (от 12-24 до 18 000-24 000 Гц). Чем выше амплитуда звука, тем лучше слышимость. Однако до известного предела, за которым начинается звуковая перегрузка. Колебания с частотой менее 16 Гц называются инфразвуком, а выше верхней границы слухового восприятия (т.е. более 20 000 Гц) — ультразвуком. В обычных условиях ухо человека не улавливает инфра- и ультразвук, но при специальном исследовании эти частоты также воспринимаются.
Область звукового восприятия у человека ограничена звуками, расположенными в диапазоне между 16 колебаниями в секунду (нижняя граница) и 20 000 (верхняя граница), что составляет 10,5 октавы. Звук частотой 16 Гц обозначается С2 — субконтроктава, 32 Гц — С, (контроктава), 64 Гц — С (большая октава), 128 Гц — с (малая октава), 256 Гц — с,, 512 Гц — с2, 1024 Гц - с3, 2048 Гц - с4, 4096 Гц - с5 и т.д.
С возрастом слух постепенно ухудшается, смещается в сторону восприятия низких частот и зону наибольшей чувствительности. Так, если в возрасте 20—40 лет она находится в области 3000 Гц, то в возрасте 60 лет и более смещается в область 1000 Гц. Верхняя и нижняя границы слуха могут изменяться при заболеваниях органа слуха, в результате чего суживается область слухового восприятия. У детей верхняя граница звуковосприятия достигает 22 000 Гц, у пожилых людей она ниже и обычно не превышает 10 000—15 000 Гц. У всех млекопитающих верхняя граница выше, чем у человека: например, у собак она достигает 38 000 Гц, у кошек — 70 000 Гц, у летучих мышей — 200 000 Гц и более. Как показали исследования, проведенные в нашей стране, человек способен воспринимать ультразвуки частотой до 200—225 кГц, но только при его костном проведении. В аналогичных условиях расширяется диапазон воспринимаемых частот и у млекопитающих [Сагало-вич Б.М., 1962].
Весь диапазон воспринимаемых ухом человека частот делят на несколько частей: тоны до 500 Гц называются низкочастотными, от 500 до 3000 Гц — среднечастотными, от 3000 до 8000 Гц — высокочастотными. Различные части диапазона воспринимаются ухом неодинаково. Оно наиболее чувствительно к звукам, находящимся в зоне 1000—4000 Гц, имеющей значение для восприятия человеческого голоса. Чувствительность (возбудимость) уха к частотам ниже 1000 и выше 4000 Гц значительно понижается. Так, для частоты 10 000 Гц интенсивность порогового звука в 1000 раз больше, чем для оптимальной зоны чувствительности в 1000—4000 Гц. Различная чувствительность к звукам низкой и высокой частоты во многом объясняется резонансными свойствами наружного слухового прохода. Определенную роль играют также соответствующие свойства чувствительных клеток отдельных завитков улитки.
Минимальная энергия звуковых колебаний, способная вызвать ощущение звука, называется порогом слухового восприятия. Порог слухового ощущения определяет чувствительность уха: чем выше порог, тем ниже чувствительность, и наоборот. Следует различать интенсивность звука — физическое понятие его силы и громкость — субъективную оценку силы звука. Звук одной и той же интенсивности люди с нормальным и пониженным слухом воспринимают как звук разной громкости.
Интенсивность звука, т.е. средняя энергия, переносимая звуковой волной к единице поверхности, измеряется в ваттах на 1 см2 (1 Вт/см2). Звуковое давление, возникающее при прохождении звуковой волны в газообразной или жидкой среде, выражается в микробарах (мкбар): 1 мкбар равен давлению в 1 дину на площади 1 см2, что соответствует одной миллионной доле атмосферного давления. Порог восприятия звукового давления у человека равен 0,0002 мкбар, или 109 эрг, а максимальный порог переносимого давления — 104 эрг, т.е. разница между минимальной и максимальной чувствительностью равна 1013 эрг и измеряется миллиардными величинами. Измерение слуха такими многоцифровыми единицами представляется крайне неудобным, поэтому единицей измерения уровня громкости звука, степени усиления (или ослабления) его является децибел (дБ). В современной аудиологии величину порога слышимости принято выражать в Па (паскалях): она составляет 2-1 б"5 Па, или 20 мнПа. 1 Па равен 1 н/м2 (н — ньютон).
Единица измерения «бел», названная в честь изобретателя телефона Бела, обозначает отношение силы исследуемого звука к ее пороговому уровню, децибел — 0,1 десятичного логарифма этой величины. Введение такой единицы для акустических измерений дало возможность выразить интенсивность всех звуков, находящихся в области слухового восприятия, в относительных единицах от 0 до 140 дБ. Сила шепотной речи составляет примерно 30 дБ, разговорной — 40—60 дБ, уличного шума — 70 дБ, громкой речи — 80 дБ, крик около уха — 110 дБ, шума реактивного двигателя — 120 дБ. Максимальным порогом силы звука для человека является 120—130 дБ; звук такой силы вызывает боль в ушах.
Слуховой анализатор обладает высокой различительной способностью. Область восприятия различий по частоте характеризуется разностным (дифференциальным) порогом частоты звука, иными словами, тем минимальным изменением частоты, которое может быть воспринято при сравнении двух различаемых частот. В диапазоне тонов от 500 до 5000 Гц ухо различает изменение частоты в пределах 0,003 %, в диапазоне 50 Гц различительная способность находится в пределах 0,01 %.
Слуховой анализатор способен дифференцировать звуки и по силе, т.е. различать появление новой, большей (или меньшей) интенсивности звука. Дифференциальный порог силы зву ка (ДП) будет большим в зоне низких частот и менее значительным в речевой зоне частот, где он равен в среднем 0,8 дБ.
Важной особенностью уха является способность к анализу сложных звуков. Звучащее тело, например струна, колеблется не только целиком, давая основной тон, но и своими частями (половиной, четвертью и т.д.), колебания которых дают обертоны (гармоники), что вместе с основным тоном составляет тембр. Все окружающие нас природные звуки содержат ряд обертонов, или гармоник, которые придают звуку определенную окраску — тембр. Звуки различных музыкальных инструментов одинаковой силы и высоты отличаются величиной, числом и качеством обертонов и легко распознаются ухом. Лишь некоторые деревянные музыкальные инструменты способны синтезировать чистый тон. В природе чистые тона также встречаются крайне редко (пение двух видов птиц).
Люди с музыкальным, или абсолютным, слухом обладают наиболее выраженной способностью производить анализ частоты звука, выделяя его составные обертоны, отличая две рядом расположенные ноты, тон от полутона. В основе музыкального слуха лежат тонкое распознавание частотных интервалов и музыкальная (звуковая) память.
Одной из особенностей слухового анализатора является его способность при постороннем шуме воспринимать одни звуки хуже, чем другие. Такое взаимное заглушение одного звука другим получило название «маскировка». Звук, который заглушает другой, называется маскирующим, звук, который заглушают, — маскируемым. Это явление нашло широкое применение в аудиологии, когда при исследовании одного уха маскирующий тон подают на другое с целью его заглушения. Следует иметь в виду, что обычно низкие тона обладают повышенной способностью маскировать более высокие тона.
Физиологическое приспособление органа слуха к силе звукового раздражителя называют адаптацией. Она выражается в том, что воздействие звука на слуховой анализатор приводит к понижению его чувствительности в тем большей степени, чем сильнее звук. Это создает оптимальный настрой анализатора на восприятие звука данной силы и частоты. Выключение звукового раздражителя сопровождается, как правило, быстрым восстановлением чувствительности слухового анализатора. Адаптация происходит не только к звуку, но и к тишине; при этом чувствительность анализатора обостряется, он готовится (настраивается) воспринять звуки наименьшей силы. Адаптация также играет роль защиты от сильных и продолжительных звуков. У разных людей адаптация имеет индивидуальные особенности, как и восстановление чувствительности. Процессы адаптации протекают по-разному при болезнях уха, и изучение их имеет значение в дифференциальной диагностике.
От адаптации следует отличать утомление слухового анализатора, которое возникает при его перераздражении и медленно восстанавливается. Этот процесс в отличие от адаптации всегда приводит к снижению работоспособности органа слуха. После отдыха явления утомления проходят, однако при частых и длительных воздействиях звуков и шума значительной интенсивности развиваются стойкие нарушения слуховой функции. Заболевания уха предрасполагают к более быстрому развитию утомления слуха.
Важным свойством слухового анализатора является его способность определять направление звука — ототопика. Установлено, что ототопика возможна только при наличии двух слышащих ушей, т.е. при бинауральном слухе. Определение направления звука обеспечивается следующими условиями: 1) разницей в силе звука, воспринимаемой ушами, поскольку ухо, которое находится ближе к источнику звука, воспринимает его более громким. Здесь имеет значение и то обстоятельство, что одно ухо оказывается в звуковой тени; 2) способностью различать минимальные промежутки времени между поступлением звука к одному и другому уху. У человека порог этой способности равен 0,063 мс. Способность локализовать направление звука пропадает, если длина звуковой волны меньше двойного расстояния между ушами, которое равно в среднем 21 см, поэтому ототопика высоких звуков затруднена. Чем больше расстояние между приемниками звука, тем точнее определение его направления; 3) способностью воспринимать разность фаз звуковых волн, поступающих в оба уха. В последние годы установлена возможность вертикальной ототопики, осуществляемой одним ухом (Б.М.Сагалович и соавт.). Ее острота несколько ниже бинауральной горизонтальной ототопики, она во многом зависит от частоты звука, сочетания различных высоких частот и имеет закономерности как в норме, так и в патологии.
Функции наружного, среднего и внутреннего уха, звукопро-ведение и звуковосприятие. Периферический отдел слухового анализатора выполняет две основные функции: звукопроведе-ние — доставка звуковой энергии к рецепторному аппарату (преимущественно механическая, или физическая, функция) и звуковосприятие — превращение (трансформация) физической энергии звуковых колебаний в нервное возбуждение. Соответственно этим функциям различают звукопроводящий и звуковоспринимающий аппараты.
Звукопроведение. В выполнении этой функции участвуют ушная раковина, наружный слуховой проход, барабанная перепонка, цепь слуховых косточек, мембрана окна улитки, перилимфа, базилярная пластинка и преддверная (рейсснерова) мембрана.
Звуковая волна, как уже отмечалось, является двойным колебанием среды, в котором различают фазу повышения и фазу понижения давления. Продольные звуковые колебания поступают в наружный слуховой проход, достигают барабанной перепонки и вызывают ее колебания. В фазе повышения (сгущения) давления барабанная перепонка вместе с рукояткой молоточка двигается кнутри. При этом тело наковальни, соединенное с головкой молоточка, благодаря подвешивающим связкам смещается кнаружи, а длинный отросток наковальни — кнутри, смещая таким образом кнутри и стремя. Вдавливаясь в окно преддверия, стремя толчкообразно приводит к смещению перилимфы преддверия. Дальнейшее распространение звуковой волны возможно лишь по лестнице преддверия, где колебательные движения передаются преддверной (рейсс-неровой) мембране, а та в свою очередь приводит в движение эндолимфу и базилярную пластинку, а затем перилимфу барабанной лестницы и вторичную мембрану окна улитки. При каждом движении стремени в сторону преддверия перилимфа в конечном итоге вызывает смещение мембраны окна улитки в сторону барабанной полости. В фазе снижения давления передающая система возвращается в исходное положение.
Воздушный путь доставки звуков во внутреннее ухо является основным. Другой путь проведения звуков к спиральному органу — костная (тканевая) проводимость. Примером может служить простой опыт. Если герметично закрыть уши, восприятие громких звуков сохранится. В этом случае вступает в действие механизм, при котором звуковые колебания воздуха попадают на кости черепа, распространяются в них и доходят до улитки. Однако механизм передачи звука до спирального органа через кость имеет двоякий характер. В одном случае колебание основной мембраны и, следовательно, возбуждение спирального органа происходит таким же образом, как и при воздушном проведении, т.е. звуковая волна в виде двух фаз, распространяясь по кости до жидких сред внутреннего уха, в фазе давления будет выпячивать мембрану окна улитки и в меньшей степени основание стремени (учитывая практическую несжимаемость жидкости). Одновременно с таким компрессионным механизмом может наблюдаться другой, инерционный, при котором учитываются не только различия в массе и плотности слуховых косточек и жидких сред внутреннего уха по отношению к черепу, но также свободное соединение этих косточек с костями черепа. В этом случае при проведении звука через кость колебание звукопроводящей системы не будет совпадать с колебаниями костей черепа, следовательно, базилярная и преддверная мембраны будут колебаться и возбуждать спиральный орган обычным путем. Колебание костей черепа можно вызвать прикосновением к нему звучащего камертона или костного телефона аудиометра. Таким образом, при нарушении передачи звука через воздух костный путь его проведения приобретает большое значение. Инерционный механизм характерен для передачи низких частот, компрессионный — высоких.
Функции отдельных элементов органа слуха в проведении звуков различны.
Ушная раковина. Роль ушных раковин в физиологии слуха человека изучена достаточно детально. Они имеют определенное значение в ототопике. В частности, при изменении положения ушных раковин вертикальная ототопика искажается, а при выключении их путем введения в слуховые проходы полых трубок полностью исчезает. Наряду с этим ушные раковины играют роль коллектора для высоких частот, отражая их от разных завитков к слуховому проходу.
Наружный слуховой проход. По форме он представляет собой трубку, благодаря чему является хорошим проводником звуков в глубину (чему способствует и покрытие стенок прохода ушной серой). Ширина и форма слухового прохода не играют особой роли при звукопроведении. Вместе с тем полное заращение просвета слухового прохода или механическая закупорка его препятствуют распространению звуковых волн к барабанной перепонке и приводят к заметному ухудшению слуха. Кроме того, форма слухового прохода и высокая чувствительность его кожи способствуют предотвращению травм органа слуха. В частности, в слуховом проходе вблизи барабанной перепонки поддерживается постоянный уровень температуры и влажности независимо от колебаний температуры и влажности внешней среды, что обеспечивает стабильность упругих свойств барабанной перепонки. Однако главное заключается в том, что резонансная частота слухового прохода при длине 2,7 см составляет примерно 2—3 кГц и благодаря этому именно указанные частоты поступают к барабанной перепонке усиленными на 10—12 дБ.
Полость среднего уха. Важным условием правильной работы звукопроводящей системы является наличие одинакового давления по обе стороны барабанной перепонки. При повышении или понижении давления как в полости среднего уха, так и в наружном слуховом проходе натяжение барабанной перепонки меняется, акустическое (звуковое) сопротивление повышается и слух понижается. Выравнивание давления по обе стороны барабанной перепонки обеспечивается вентиляционной функцией слуховой трубы. При глотании или зевании слуховая труба открывается и становится проходимой для воздуха. Поскольку слизистая оболочка среднего уха постепенно всасывает воздух, нарушение вентиляционной функции слуховой трубы приводит к тому, что наружное давление превышает давление в среднем ухе, в результате чего происходит втяжение барабанной перепонки внутрь. В связи с этим нару шается звукопроведение и возникают патологические изменения в среднем ухе. Своеобразие строения и натяжения барабанной перепонки обусловливает ее импеданс, близкий к импедансу воздуха на частоте 0,8 кГц, поэтому звуки этой и смежных частот почти беспрепятственно проходят через барабанную перепонку.
Барабанная перепонка и слуховые косточки. Они увеличивают силу звуковых колебаний за счет уменьшения их амплитуды. Благодаря тому, что площадь основания стремени (3,2 мм2) в окне преддверия значительно меньше рабочей площади барабанной перепонки (около 55 мм2), соответственно увеличивается сила за счет уменьшения амплитуды; увеличение силы звука происходит также благодаря рычажному способу сочленения слуховых косточек. В целом давление на поверхности окна преддверия оказывается примерно в 19 раз больше, чем на барабанной перепонке. Этот механизм увеличения звукового давления является чрезвычайно важным приспособлением, способствующим восстановлению утрачиваемой акустической (звуковой) энергии при переходе из воздушной среды в жидкую (перилимфу), которая имеет значительно большую плотность и, следовательно, большее акустическое сопротивление (импеданс) по сравнению с воздухом. Благодаря барабанной перепонке и слуховым коеточкам воздушные колебания большой амплитуды и относительно малой силы преобразуются в колебания перилимфы с относительно малой амплитудой, но большим давлением.
Слуховые мышцы. Слуховые мышцы (mm.tensor tympani, stapedius) являются тем специальным механизмом среднего уха, который выполняет, с одной стороны, аккомодационную функцию (обеспечивая оптимальное натяжение отдельных элементов звукопроводящего аппарата), с другой — защитную функцию при действии звуков большой мощности: при высокой интенсивности звука слуховые мышцы рефлек-торно резко сокращаются (их рефрактерный период опережает быстроту распространения колебаний на слуховые косточки и перилимфу), что приводит к торможению колебания барабанной перепонки и слуховых косточек и соответственно к уменьшению звукового давления (и его жесткости), передаваемого перилимфе. Этим рецепторный аппарат улитки предохраняется от сильных и резких звуков.
|
|
|