Понятия возбудимости и раздражимости. Раздражители определение, их виды, характеристика. Мембранный потенциал покоя параметры, механизм формирования. Понятия возбудимости и раздражимости Возбудимость
Скачать 2.86 Mb.
|
Характеристика функциональной системы, поддерживающей постоянство газового состава крови и ее схема.Для поддержания нормального уровня концентрации кислорода в крови одного внешнего дыхания недостаточно. В число исполнительных механизмов функциональной системы кислородного снабжения организма (ФСКС) входят еще механизмы, обеспечивающие связывание кислорода, его транспортировку, уровень окислительно-восстановительных процессов, а также серию поведенческих проявлений, направленных на сохранение кислородного снабжения. Естественно, что системообразующим фактором в ФСКС выступает уровень кислорода в крови, который контролируется хеморецепторами. Рис. 45. Схема функциональной системы кислородного снабжения организма по П.К. Анохину. Полезный результат ФСКС - нормальная концентрация кислорода в тканях- является иерархически самым главным результатом гомеостатической деятельности организма, так как результаты деятельности других гомеостатических функциональных систем (ФС поддержания АД, ФС поддержания состава крови, ФС рН и др.) являются подрезультатами ФСКС, так как вместе обеспечивают условия для кислородного снабжения организма. Набор исполнительных механизмов ФСКС определяется теми исполнительными механизмами, которые входят в указанные выше функциональные системы подчиненного ранга. Их пять групп: 1) параметры внешнего дыхания (глубина и частота дыхания, легочные объемы и емкости, эффективность легочной вентиляции); 2) параметры гемодинамики и сердечной деятельности (частота сердцебиений и ударный объем сердца, АД и скорость кровотока); 3) параметры выделительной функции и механизмы поддержания рН, ведь кислотность влияет на кривую диссоциации гемоглобина (выделительная функция ЖКТ и почек, потоотделение, буферные состава крови); 4) параметры насыщения крови кислородом (кислородная емкость крови, количество Нв и эритроцитов, сродство Нв к кислороду); 5) поведение (включается, если указанные внутренние исполнительные механизмы ФСКС не в состоянии удовлетворить потребность в кислороде) - например, обмахивание веером или открытие форточки, выныривание из воды и т.п. - все, что может помочь избежать удушья. Наиболее наглядно вовлечение различных исполнительных механизмов ФСКС в реализацию полезного результата - обеспечения нормального содержания кислорода в крови - проявляется при различных экстремальных условиях, к которым прежде всего относятся условия пониженного или повышенного атмосферного давления, возникновение разнообразной легочной и сердечно-сосудистой патологии. Особенности и регуляция дыхания при мышечной работе, при пониженном и повышенном атмосферном давлении Гипоксия и действие на организм пониженного атмосферного давления. Всякий недостаток кислорода в отдельных тканях или организме в целом носит название гипоксии. Недостаток кислорода крови называется гипоксемией. Гипоксия может быть четырех видов. 1. При недостаточном насыщении крови кислородом наступает дыхательная (гипоксемическая) гипоксия. Такое состояние возникает в следующих случаях: - при низком парциальном давлении кислорода в воздухе; - при недостаточной вентиляции легких (непроходимость дыхательных путей, слабость дыхательных мышц, недостаточность дыхательного центра, пневмоторакс). При этом в крови отмечается гиперкапния, повышенная концентрация СО2. - при ухудшении диффузии газов через легочную мембрану (спазм бронхов, заполнение альвеол жидкостью при отеках, пневмонии, утоплении), которое тоже сопровождается гиперкапнией; - при некоторых видах порока сердца (не заросший боталлов проток и т.п). 2. Анемическая гипоксия обусловлена понижением способности крови связывать кислород, т.е. снижением кислородной емкости крови. Это возникает при потере крови, связывании Hb другими веществами (окисью углерода, ферроцианидами и др.). 3. В случае замедления движения крови в капиллярах при общей недостаточности кровообращения, вследствие недостаточного притока крови к отдельным органам возникает гипоксия застойная, или циркуляторная. По существу , всякая смерть от остановки сердца является смертью от гипоксии. 4. Когда ткани в силу инактивации окислительных ферментов (например, цианидами) не могут использовать кислород, возникает гистотоксическая гипоксия. За исключением циркуляторной гипоксии, происходящей в случае недостаточного притока крови к отдельным органам, остальные формы гипоксии ведут к недостаточному снабжению кислородом всех тканей. Но так как чувствительность разных тканей к недостатку кислорода различна, то одна и та же степень гипоксии может вызывать серьезные расстройства в деятельности одних органов, почти не затрагивая других, изменения в которых будут в первую очередь вызваны расстройствами, происходящими в наиболее чувствительных к гипоксии органах. Быстрее и резче всего на недостаток кислорода реагируют высшие отделы ЦНС и высшие рецепторы (сетчатка глаза). Это появляется особенно при быстром развитии и значительной гипоксии. В этом случае потеря сознания может наступать мгновенно, как это бывает, например, при удушении или удавлении (прекращении притока крови к мозгу). При более медленном развитии гипоксии смерть также всегда наступает после потери сознания, т.е. после паралича функций высших отделов мозга. Следствием падения напряжения кислорода в крови сначала всегда является повышение деятельности дыхательного центра, что проявляется в учащении и углублении дыхания и приводит к росту МОД. Этот эффект зависит главным образом от рефлекторной стимуляции хеморецепторов дуги аорты и каротидного синуса. Усиление легочной вентиляции при гипоксии характерно при ее неглубокой стадии. Оно имеет положительное значение для организма, особенно в случае дыхательной гипоксии. В этом случае рост легочной вентиляции приводит к повышению парциального давления кислорода в крови. При других формах гипоксии, не зависящих от недостатка кислорода в артериальной крови, увеличение дыхательной деятельности не может способствовать устранению гипоксии. При углублении гипоксии наступает ослабление работоспособности дыхательного центра, сначала проявляющееся в периодическом Чейн-Стоксовом дыхании, которое не обеспечивает достаточной вентиляции легких. Тогда к причинам, вызывающим гипоксию, присоединяется недостаточное дыхание и получается порочный круг: гипоксия приводит к недостаточности дыхания, а недостаточность дыхания еще более усугубляет гипоксию. Разорвать этот круг можно лишь устранением причины гипоксии. Изменения кровообращения при гипоксии характеризуются тем, что в начальных ее фазах наступает учащение сердцебиений, рост минутного объема сердца, повышение артериального давления. Вследствие опорожнения депо масса циркулирующей крови увеличивается и растет кислородная емкость крови. Однако при длительной и тяжелой гипоксии наступает поражение центров регуляции кровообращения и получается второй порочный круг - гипоксия вызывает расстройство кровообращения, а оно усугубляет гипоксию. Особенности дыхания при пониженном атмосферном давлении. Наиболее изученной формой гипоксии является гипоксемическая гипоксия, особенно ее дыхательная форма. Человек встречается с этой формой гипоксии при подъеме на высоты, при полетах в стратосферу, при космических полетах. Артериальная кровь насыщена кислородом приблизительно на 95-90% до тех пор, пока барометрическое давление не падает ниже 500-550 мм Hg, что соответствует высоте 3-3,5 км над уровнем моря. При дальнейшем падении барометрического давления насыщение артериальной крови кислородом быстро снижается, оно доходит до 50% величины кислородной емкости при барометрическом давлении 270-300 мм Hg (7,5-8 км высоты). С увеличением высоты над уровнем моря падает барометрическое давление и парциальное давление О2, однако насыщение альвеолярного воздуха водяными парами при температуре тела не изменяется. На высоте 20 000 м содержание О2 во вдыхаемом воздухе падает до нуля. Если жители равнин поднимаются в горы, гипоксия увеличивает у них вентиляцию легких, стимулируя артериальные хеморецепторы. Изменения дыхания при высотной гипоксии у разных людей различны. Возникающие во всех случаях реакции внешнего дыхания определяются рядом факторов: 1) скорость, с которой развивается гипоксия; 2) степень потребления О2 (покой или физическая нагрузка); 3) продолжительность гипоксического воздействия. У значительного большинства людей до высоты 2,5-3 км над уровнем моря не наступает серьезных расстройств. Это, конечно, не значит, что организм находится в таком же состоянии, что и внизу. Хотя на высоте 1,5-3 км артериальная кровь обычно еще насыщена кислородом не менее 90% своей кислородной емкости, напряжение кислорода в крови уже снижено и начинают появляться описанные выше рефлекторные реакции - учащение и углубление дыхания, учащение пульса, выход крови из депо, рост эритропоэза. Все эти изменения у здорового человека как раз и обеспечивают сохранение работоспособности на данной высоте. Первоначальная гипоксическая стимуляция дыхания, возникающая при подъеме на высоту, приводит к вымыванию из крови СО2 и развитию дыхательного алкалоза. Это в свою очередь вызывает увеличение рН внеклеточной жидкости мозга. Центральные хеморецепторы реагируют на подобный сдвиг рН в цереброспинальной жидкости мозга резким снижением своей активности, что затормаживает нейроны дыхательного центра настолько, что он становится нечувствительным к стимулам, исходящим от периферических хеморецепторов. Довольно быстро гиперпноэ сменяется непроизвольной гиповентиляцией, несмотря на сохраняющуюся гипоксемию. Подобное снижение функции дыхательного центра увеличивает степень гипоксического состояния организма, что чрезвычайно опасно, прежде всего для нейронов коры большого мозга. С высоты 3-3,5 км у человека начинают обнаруживаться расстройства ряда функций, что зависит главным образом от изменения нормальной деятельности высших центров. На этой высоте падает не только напряжение кислорода в крови, но и количество связанного гемоглобином кислорода. Более или менее тяжелые симптомы дыхательной гипоксии начинаются обычно тогда, когда насыщение артериальной крови кислородом падает ниже 85-80% КЕК. Если же насыщение крови падает ниже 45% КЕК, то наступает смерть. При подъеме на значительные высоты вследствие расстройства регуляции отмечаются усталость, апатия, сонливость, дрожание пальцев, головная боль, одышка и сердцебиение, тошнота, т.е. развивается высотная или горная болезнь. В зависимости от индивидуальных особенностей и тренированности человека высота, на которой наступают тяжелые расстройства, может быть различной, но они наступают у всех. Высота 8,5-9 км является пределом, выше которого человек без дыхательного аппарата не может подняться без риска для жизни. При акклиматизации к условиям высокогорья наступает адаптация физиологических механизмов к гипоксии. К основным факторам долговременной адаптации относятся: повышение содержания СО2 и понижение содержания О2 в крови на фоне снижения чувствительности периферических хеморецепторов к гипоксии, а также рост концентрации гемоглобина. Особенности дыхания при повышенном атмосферном давлении. В то время, как низкое атмосферное давление ведет к химическим сдвигам в организме, обусловленным недостатком кислорода, повышенное атмосферное давление, с которым человек сталкивается при водолазных работах, действует прежде всего как физический фактор. Погружение на каждые 10 м под поверхность воды означает повышение воздействующего на организм давления на 1 атмосферу, так что на глубине, скажем, 90 м на человека действует уже 10 атм. Хотя само пребывание под таким давлением, если оно продолжается не больше 2 часов, не опасно, но подъем с этой глубины при несоблюдении необходимых мер может привести к смерти. Дело в том, что когда человек подвергается повышенному давлению, то он может дышать только при подаче ему воздуха под таким же давлением. Растворение же газов в жидкости прямо пропорционально их парциальному давлению над жидкостью, и если 1 мл крови при дыхании на уровне моря растворяет 0,011 мл азота, но при давлении в 5 атмосфер - в 5 раз больше. Азот растворяется также во всех тканях, особенно в жировой и богатой жиром нервной ткани. При быстром переходе от давления в 5 атм. к обычному давлению ткани тела могут удержать в растворенном состоянии лишь 0,011 мл газа на 1 мл крови. Остальной азот переходит в газообразное состояние и образует пузырьки в тканях и крови. Такой пузырек может закупорить коронарную или мозговую артерию, что вызывает мгновенную смерть. Мелкие пузырьки азота, освобождающиеся в нервной ткани, суставах, мышцах и т.п., смерти не вызывают, но причиняют тяжелые боли. Чтобы избежать этих осложнений, нужно поднимать водолазов только с такой скоростью, чтобы газы из крови успевали выделяться легкими. Если же пришлось по жизненным показаниям срочно поднять человека с большой глубины, то его следует поместить в специальную декомпрессионную барокамеру, в которой можно восстановить большое давление, добиться повторного растворения пузырьков и затем снова под наблюдением врача медленно "поднимать" его на "поверхность". В настоящее время при погружении водолаза на большую глубину ему дают газовую смесь, где азот заменен гелием, который почти не растворяется в крови. Так как кислород под большим давлением токсичен, его добавляют к гелию в такой концентрации, чтобы парциальное давление его на глубине было равно тому давлению, которое имеется в обычных условиях. Дыхание при мышечной работе. Интенсивность дыхания тесно связана с интенсивностью окислительных процессов: глубина и частота дыхательных движений уменьшаются в покое и увеличиваются при работе, притом тем сильнее, чем напряженнее работа. Мышечная работа всегда сопровождается увеличением легочной вентиляции, что совершенно необходимо для удовлетворения возникающей при работе потребности в кислороде. При интенсивной работе легочная вентиляция может достигать 120 л/мин вместо 5-8 л/мин в покое. Исследования физиологов показали, что усиление дыхания при мышечной работе зависит, во-первых, от увеличения концентрации углекислоты и раздражения хеморецепторов, а во-вторых, от раздражения проприорецепторов мышц. Наложение жгута на работающую ногу вызывает увеличение вентиляции так же, как и без жгута. Одновременно с усилением дыхания во время работы наступает усиление деятельности сердца, приводящее к увеличению минутного объема кровотока. Вентиляция легких и МОК нарастают в соответствии с величиной выполняемой работы. Вычислено, что при повышении потребности кислорода при мышечной работе на 100 мл/мин МОК возрастает на 1000 мл. Увеличению транспорта кислорода при тяжелой мышечной работе способствует также выброс эритроцитов из депо и обеднение крови водой вследствие потения, что ведет к некоторому сгущению крови и повышению концентрации Нb, а значит и КЕК. Значительно растет при мышечной работе коэффициент утилизации кислорода. Из каждого литра крови в покое утилизируется 80 мл, при работе до 120 мл кислорода. Повышенное поступление кислорода в ткани при мышечной работе зависит от того, что понижение напряжения кислорода а мышцах, увеличение напряжения углекислого газа и концентрации водородных ионов способствует увеличению диссоциации оксигемоглобина. Одной из причин увеличения легочной вентиляции при интенсивной мышечной работе является накопление молочной кислоты в тканях и переход ее в кровь. Содержание молочной кислоты в крови может достигать при этом 200 мг% против 5-22 мл в покое. Молочная кислота вытесняет угольную кислоты и ее связей с ионами натрия и калия, что приводит к повышению напряжения СО2 в крови и возбуждению дыхательного центра. Накопление молочной кислоты при мышечной работе возникает потому, что интенсивно работающие мышечные волокна испытывают недостаток в кислороде и часть молочной кислоты не может окислиться до конечных продуктов. Такое состояние называется кислородной задолженностью. Окисление образовавшейся во время работы молочной кислоты завершается уже после окончания работы - во время восстановительного периода, в течение которого сохранятся интенсивное дыхание, достаточное для того, чтобы излишнее количество накопившейся в организме молочной кислоты было ликвидировано. Каждый человек имеет индивидуальные показатели внешнего дыхания. В норме частота дыхания варьирует от 16 до 25 в минуту, а дыхательный объем — от 2,5 до 0,5 л. При мышечной нагрузке разной мощности легочная вентиляция, как правило, пропорциональна интенсивности выполняемой работы и потреблению О2 тканями организма. У нетренированного человека при максимальной мышечной работе минутный объем дыхания не превышает 80 л*мин-1, а у тренированного может быть 120—150 л*мин-1 и выше. Кратковременное произвольное увеличение вентиляции может составлять 150—200 л*мин-1. Дыхание чистым кислородом. Гипербарическая оксигенация. В клинической практике иногда возникает потребность в повышении РО2 в артериальной крови. При этом повышение парциального давления О2 во вдыхаемом воздухе оказывает лечебный эффект. Однако продолжительное дыхание чистым О2 может иметь отрицательный эффект. У здоровых испытуемых отмечаются боли за грудиной, особенно при глубоких вдохах, уменьшается жизненная емкость легких. Возможно перевозбуждение ЦНС и появление судорог. Полагают, что кислородное отравление связано с инактивацией некоторых ферментов, в частности дегидрогеназ. У недоношенных новорожденных при длительном воздействии избытка О2 образуется фиброзная ткань за хрусталиком и развивается слепота. | |
| Общая характеристика пищеварительной системы: значение пищеварения для организма, сущность пищеварения, общие закономерности деятельности пищеварительной системы, типы пищеварения. Пищеварением называется совокупность физиологических, физических и химических процессов, обеспечивающих прием и переработку поступающих из внешней среды продуктов в вещества, которые способны усваиваться организмом. Вся совокупность необходимого для жизнедеятельности поступает в организм в виде пищи и воды. Физико-химическая переработка пищевого комка в желудочно-кишечном тракте подготавливает питательные вещества для улавливания содержащейся в них энергии и использования их для построения структур организма. Современные представления о пищеварении были заложены в конце 19 века И.П. Павловым и его последователями в России. Заслуга Павлова и его школы в области исследования физиологии пищеварения заключается в создании представления о нервно-рефлекторной регуляции пищеварения и введении в обиход научных исследований методов прижизненного наблюдения за процессом и регуляцией пищеварения. В частности, Павловым разработан метод мнимого кормления с выведенным наружу пищеводом, метод использования фистул – искусственно созданного путем операции сообщения между каким-либо органом и внешней средой. В настоящее время для исследования пищеварения применяются разнообразные физико-химические методы и способы хронического наблюдения, например, для прижизненного определения кислотности, температуры применяют специальные радиозонды, которые благодаря миниатюрности могут быть проглочены человеком. Для изучения тонкой регуляции пищеварения используются цитохимические, биохимические и молекулярно-генетические методы. В клинической практике широко используют зондирование ЖКТ для получения пищеварительных соков, желчи с целью их биохимического анализа. Исполнительные элементы пищеварительной системы объединены в пищеварительную трубку. К ней примыкают компактные железистые образования – слюнные и поджелудочная железы, печень. Совокупность трубки и железистых образований называют желудочно-кишечным трактом – ЖКТ . Типы пищеварения. Исследование пищеварительных процессов в тонком кишечнике позволило установить важную роль, которая принадлежит соприкосновению питательных веществ с поверхностью мембран клеток слизистой оболочки. В опытах in vitro оказалось, что в присутствии полоски живой кишки скорость ферментативного гидролиза некоторых питательных веществ, например, крахмала, возрастает, значительно превышая суммарную активность содержащего ферменты раствора и полоски кишки, взятых в отдельности. В соответствии с этим найдено, что скорость гидролиза крахмала и белка происходит намного быстрее внутри кишки, чем в пробирке под влиянием ферментов, содержащихся в выделенном в кишку соке. Получены данные, что пептидазная активность сосредоточена в основном на свободной поверхности клеток кишечного эпителия. Обнаружено, что липаза поджелудочного сока адсорбируется на поверхности эпителия тонких кишок. На основании этих фактов Уголев пришел к заключению, что большая пористая поверхность тонкой кишки способствует усилению энзиматических процессов, адсорбируя ферменты и являясь своеобразным пористым катализатором. Окончательное расщепление питательных веществ происходит на той же поверхности тонкой кишки, которая обладает функцией всасывания. Происходящее на поверхности кишки расщепление питательных веществ названо пристеночным, контактным, или мембранным пищеварением, в отличие от полостного пищеварения, осуществляющегося в полости пищеварительного тракта без непосредственного контакта со слизистой оболочкой, и внутриклеточного пищеварения, совершающегося в клетке (например, при фагоцитозе). Таким образом различают три типа пищеварения: полостное, пристеночное и внутриклеточное . Внутриклеточное пищеварение происходит внутри клетки. Оно распространено у простейших и наиболее примитивных многоклеточных. У высших животных и человека оно имеет очень ограниченное значение, выполняя защитные функции в форме фагоцитоза. Внеклеточное дистантное пищеварение происходит во внеклеточной среде с помощью ферментов, образованных в секреторных клетках. При этом секреторные клетки удалены от полостей, в которых происходит гидролиз питательных веществ. Данный тип пищеварения особенно развит у высокоорганизованных животных и человека. Мембранное или пристеночное пищеварение занимает в пространственном отношении промежуточное положение между внеклеточным и внутриклеточным пищеварением. Оно осуществляется ферментами, прикрепленными (иммобилизованными) на мембранах кишечных клеток. Иммобилизация ферментов значительно ускоряет скорость химического расщепления питательных веществ. Система пищеварения функционирует как технологическая линия или конвейер, в которой последовательно происходит: механическое измельчение пищи; питательные вещества подвергаются обработке в полостном пищеварении; затем наступает очередь реакций мембранного пищеварения; всасывание продуктов ферментативного расщепления питательных веществ. Функции желудочно-кишечного тракта. ЖКТ выполняет очень важные для организма функции. 1. Пищеварительная функция. Ее реализация состоит в физико-химическом превращении веществ и всасывании продуктов гидролиза. Физическое изменение пищи подразумевает ее механическую обработку – размельчение, перемешивание и растворение. Химическое превращение состоит в последовательной деградации питательных веществ до состояния, пригодного для извлечения из них энергии и для построения или обновлении структурных элементов (костей, мышц, мембран и т.д.). Химическое расщепление питательных веществ происходит при участии ферментов – протеаз, липаз и гидролаз (амилаз). Ферменты образуются в секреторных клетках пищеварительных желез и выделяются в полость ЖКТ в составе пищеварительных соков (секретов) – слюны, желудочного, поджелудочного и кишечного. Все пищеварительные железы в совокупности выделяют около 6–8 л соков в сутки. Пищеварительные ферменты поступают в ЖКТ в разных местах, что обеспечивает последовательность в химическом превращении пищи. В результате гидролитического расщепления питательных веществ из белков образуются аминокислоты и низкомолекулярные пептиды (олигопептиды), из углеводов (крахмала, гликогена, дисахаридов) – моносахариды, из жиров – ди- и моноглицериды, глицерол, жирные кислоты. В таком химически трансформированном виде эти вещества всасываются в кровь и лимфу. Вода, минеральные вещества и некоторые низкомолекулярные органические вещества всасываются в кровь без предварительной обработки. 2. Гомеостатическая функция - ЖКТ является одним из исполнительных органов важнейших гомеостатических функциональных систем - ФС питания, ФС подержания осмотического давления, ФС поддержания рН и др. Так, пищеварительный тракт участвует в нескольких этапах водно-солевого обмена. Это участие просматривается уже в формировании чувства жажды в результате неприятного ощущения сухости во рту, которое снижается при слюноотделении. В свою очередь оно зависит от количества воды в организме. Доказаны орофарингеальный, желудочный и кишечный сенсорные механизмы возбуждения и торможения центра жажды с пищеварительного тракта. Дегидратация (обезвоживание) организма снижает секреторную активность пищеварительных желез, что способствует сохранению воды в организме. Диурез и объем секреции, выделение электролитов в составе секретов желез и мочи взаимосвязаны и также направлены на сохранение воды в организме. Значительное количество воды и электролитов депонируется в пищеварительном тракте и включается в их обмен, циркулирует между кровью и содержимым пищеварительного тракта. Ряд регуляторных пептидов пищеварительного тракта влияет на водно-солевой обмен. Вся деятельность пищеварительного тракта направлена на осуществление одной цели - поддержание гомеостаза организма. Ясно, что постоянное удержание концентрации каждого из питательных веществ в достаточно узкой полосе значений возможно лишь в том случае, если в каждый данный момент времени скорость его поступления в кровь из ЖКТ и депо соответствует скорости его расходования. По мнению К. Бернара, концентрация питательных веществ в крови удерживается на постоянном уровне за счет расходования ранее созданных резервов. О достаточности этих резервов свидетельствует тот факт, что даже при многодневном голодании грубых нарушений питательного гомеостаза не происходит. Однако, в последние годы было показано, что источником срочно необходимых мономеров для организма являются не депо питательных веществ, а пищеварительный тракт. Единственным источником питательных веществ, за счет которого поддерживается гомеостаз - экзогенное питание. Тем не менее кишечник никогда не имеет дело только с теми веществами, которые съедены. Внутренняя среда организма, которая должна быть относительно постоянна, начинается не с крови, а с кишечника. Содержимое кишечника (химус) достаточно постоянен в составе за счет добавления эндогенных продуктов (транссудация плазмы, соки и т.п. (речь идет о мономерном и полимерном составе). Прием экзогенных продуктов периодичен. Голодная периодика возникает через 18 часов после приема пищи и сопровождается выбросом соков, эндогенных продуктов. Независимо от того, что поступает в кишечник сверху, постоянно в просвет кишки поступает до 40г протекающей по воротной вене плазмы. На 1г экзогенного Na приходится 9 г. эндогенного. 20 г. белка в сутки поступает в кишку из организма, липидов - в 6 раз больше, чем поступает с пищей. Следовательно, в тонкой кишке наряду с потоком веществ в кровь постоянно существует и противоположный - из крови в полость кишечника. Для Na, Сl, N -содержащих веществ он преобладает в гастpодуоденальном отделе, что ведет к пополнению энтеpальной сpеды этими ингредиентами. В итоге химус становится относительно постоянным по составу и соотношению масс его основных ингредиентов. Показано, что соотношение свободных аминокислот при кормлении мясом, неполноценным белком и при безбелковом питании практически не меняется из-за эндогенного поступления белка в полость кишки. Нарушение постоянства состава химуса, обусловленные длительным несбалансированным питанием или расстройством функций пищеварительных органов, вызывают расстройства обменных процессов, ведут к нарушению постоянства состава внутренней среды и в конечном итоге к гибели организма. Результатом гомеостатирования содержимого кишечника является стабилизация скорости всасывания нутриентов. Химус кишечника становится основным депо мономеров, особенно глюкозы и аминокислот. Если возникает сигнал о сдвиге гомеостаза ниже середины полосы рассогласования, возникает стимул для увеличения всасывания, и эти мономеры быстро поступают из депо. Одновременно возникает чувство голода как сигнал, что надо пополнить запасы химуса. Представьте, что у вас в банке есть определенный денежный вклад, который может быть источником средств для подержания постоянной суммы денег в вашем кармане, необходимых для ежедневных затрат. Однако, если вы получаете стипендию или зарплату достаточно регулярно, вам нет нужды трогать свой вклад в банке. Желудочно-кишечный тракт играет роль зарплаты при наличии вклада в сберкассе (депо гликогена, жира и т.п.). 3. Защитные функции ЖКТ. Поступление пищевых веществ в ЖКТ следует рассматривать не только как способ восполнения энергетических и пластических веществ организма, но и как аллергическую и токсическую агрессию. Питание гетеротрофов связано в опасностью проникновения во внутреннюю среду различных антигенов и токсических веществ. Лишь благодаря сложной системе защиты, негативные стороны питания эффективно нейтрализуются. Функции эти следующие: 3.1. Механическая защита от внедрения бактерий и инородных тел (роль слизистого барьера и пористого фуз-слоя в кишечнике). Механическая защита обусловлена несколькими механизмами. Во-первых, слизистая ЭКТ проницаема для молекул размером не >300-500 дальтон. Во-вторых, такие предмембранные структуры, как гликокаликс, состоящий их кислых нитевидных мукополисахаридов, образует своеобразный, толщиной до 100 нм, аналог молекулярного сита, которое отделяет мелкие молекулы от крупных. Молекулы, которые подвергаются гидролизу, утрачивают свои антигенные и токсические свойства. 3.2. Иммунная система пищеварительного тракта. Пищеварительный тракт имеет ряд защитных механизмов против патогенных антигенных факторов. Среди них уже назывались антибактериальные свойства слюны, сока поджелудочной железы, желчи, протеолитическая активность секретов, моторная деятельность кишечника, характерная ультраструктура поверхности слизистой оболочки тонкой кишки, препятствующая проникновению через нее бактерий. К этим неспецифическим барьерным механизмам следует добавить специфическую иммунную систему защиты, локализованную в пищеварительном тракте и составляющую важную часть общей многокомпонентной иммунной системы человека. В пищеварительном тракте имеется три группы иммунокомпетентных элементов лимфоидной ткани: 1) лимфоидные фолликулы на всем протяжении пищеварительного тракта; в подвздошной кишке и червеобразном отростке эти фолликулы образуют большие скопления в виде групповых лимфоидных узелков (пейеровы бляшки); 2) плазматические и В-лимфоидные клетки слизистой оболочки пищеварительного тракта; 3) малые не идентифицированные лимфоидные клетки. К органам местной иммунной системы пищеварительного тракта, где локализованы эти элементы, относятся миндалины глоточного кольца в устье дыхательного и пищеварительного трактов; солитарные лимфатические фолликулы, расположенные в стенке кишки на всем ее протяжении, крупные лимфоидные образования — пейеровы бляшки в наибольшем количестве расположены в подвздошной кишке, встречаются в двенадцатиперстной и тощей кишке; червеобразный отросток; плазматические клетки слизистой оболочки желудка и кишечника. Местная иммунная система пищеварительного тракта обеспечивает две основные функции: 1) распознавание и индукцию толерантности к пищевым антигенам; 2) блокирующий эффект по отношению к патогенным микроорганизмам. Миндалины осуществляют местную защиту путем выделения в полость глотки иммуноглобулинов, интерферона, лизоцима, лимфоцитов, макрофагов и простагландинов. Они способствуют формированию иммунной памяти путем образования клона лимфоцитов, которые подготавливают иммунную систему к повторной встрече с антигенами. Групповые лимфоидные узелки, или пейеровы бляшки, являясь иммунокомпетентными элементами тонкой кишки, участвуют в распознавании пищевых антигенов химуса и формировании местного иммунного ответа. Червеобразный отросток является важнейшим компонентом местной иммунной системы. Вследствие поступления в него антигенов пищевого и микробного происхождения развивается иммунный ответ. Плазматические клетки свободно располагаются в слизистой оболочке и строме ворсинок кишки под эпителием. Они синтезируют и секретируют иммуноглобулины всех известных в настоящее время классов (G, M, A, D, Е). Различные отделы пищеварительного тракта в норме содержат различное количество плазмоцитов, продуцирующих соответственно разное количество иммуноглобулинов (Ig) разных классов с преобладанием IgA. При напряженном иммуногенезе его секреция многократно возрастает. Органы местной иммунной защиты пищеварительного тракта обеспечивают защитный иммунный ответ на контакт с антигенами, через рот поступающими в организм человека из внешней среды. Выраженность ответной реакции зависит не только от силы антигенной стимуляции, но и от функционального состояния макроорганизма, его нервной и эндокринной регуляторных систем, в том числе и от влияний регуляторных пептидов пищеварительного тракта. При всей своей автономности местная иммунная система пищеварительного тракта тем не менее состоит в сложной связи с общей иммунной системой и другими местными иммунными системами человека. 3.3. Дезинтоксикационная функция (пищевые волокна, роль печени). Роль не утилизируемых фибриллярных структур пищи достаточно велика. Показано, что многие заболевания ЖКТ, а также дисбактериозы, нарушения функций печени, нарушения стероидного обмена, атеросклероз и др. обменные нарушения тесно связаны с доминированием в питании т.н. безбалластной пищи. Сейчас ясно, что такие, ранее считавшиеся балластными вещества, как пищевые волокна, целлюлоза, лигнины и пр. являются важным и обязательным компонентом пищевого рациона, так как выполняют весьма важные функции. К ним относятся: 1. Обеспечение формирования гелеобразных структур, что играет существенную роль в опорожнении желудка. 2. Удерживают воду в полости ЖКТ. 3. Поверхность фибриллярных структур обладает сорбционными свойствами. В частности, они способны адсорбировать желчные кислоты, и, таким образом, влиять на их функцию и расщепление жиров. 4. Обладают катионообменными свойствами. 5. Обладают антиоксидантными свойствами. 6. Являются главными компонентами среды, в которой обитают кишечные бактерии и являются источником их пищи. Все сказанное необходимо учитывать в диететике и при составлении пищевых рационов различных организованных групп населения. 4. Регуляторная функция. Она обеспечивается эндокринной системой ЖКТ и биологически активными веществами, которые выделяются в составе секретов главных пищеварительных желез. В составе энтеральной нервной системы, расположенной в стенке кишечника, имеются нейрокринные клетки, которые выделяют регуляторные нейропептиды, которые выделяются нервными окончаниями и достигают клеток мишеней, диффундируя на небольшие расстояния в межклеточной жидкости, разделяющей эти клетки. К ним относятся: вазоактивный кишечный пептид (VIP), нейрокинин А, кальцитонин-генсвязанный пептид (CGRP), соматостатин, субстанция Р, нейрокинин В, энкефалины. Регуляторные пептиды пищеварительного тракта влияют не только на секрецию, моторику, всасывание, высвобождение других регуляторных пептидов и пролиферацию органов пищеварения, но оказывают и так называемые общие эффекты. Они многочисленны и проявляются в ряде поведенческих реакций, но особенно выражены в изменении обмена веществ, деятельности сердечно-сосудистой и эндокринной систем организма. Гастрин усиливает высвобождение гистамина, инсулина, кальцитонина, липолиз в жировой ткани, выделение почками воды, калия, натрия. Соматостатин тормозит высвобождение гастроинтестинальных гормонов, соматотропина, подавляет гликогенолиз, изменяет пищевое поведение. ВИП снижает тонус кровеносных сосудов с гипотензивным эффектом, тонус бронхов. Малые дозы ВИП вызывают гипертермию. Секретин усиливает липолиз и гликолиз, тормозит реабсорбцию гидрокарбонатов в почках, увеличивает диурез, ренальное выделение натрия и калия, повышает сердечный выброс. ХЦК является рилизинг-фактором для инсулина. ГИП усиливает высвобождение инсулина и глюкагона. Нейротензин усиливает высвобождение глюкагона, соматостатина, вазопрессина, гистамина, лютеинизирующего и фолликулостимулирующего гормонов, тормозит высвобождение инсулина, усиливает теплопродукцию. Ряд регуляторных пептидов образуется из экзогенных (в том числе пищевых) белков при их частичном гидролизе в желудке и кишечнике. Так при гидролизе белков молока и хлеба. образуется группа морфиноподобных веществ (экзорфины). Биологически активные вещества могут синтезироваться в самих железах, элиминироваться из крови и затем выделяться в составе секретов. Слюна содержит лизоцим (муромидазу), который обладает антибактериальной активностью, участвует в реакциях местного иммунитета, увеличивая продукцию антител, фагоцитов, повышает межклеточную проницаемость (подобно гиалуронидазе), свертываемость крови. Калликреин слюны и слюнных желез принимает участие в образовании эндогенных вазодилататоров и гипотензивных веществ, участвует в обеспечении местной гиперемии и повышении проницаемости капилляров, усиливает секрецию желудка. Из слюны выделен белок, обладающий свойствами антианемического фактора. Ферменты слюны влияют на микрофлору полости рта, на трофику ее слизистой оболочки и зубов. Слюнные железы принимают участие в обеспечении гомеостаза ферментов и гормонов в крови, выделяя их из крови и в кровь. Одним из многих обнаруженных в слюне и железе веществ является паротин. Он влияет на обмен белков, кальция (увеличивает кальцификацию трубчатых костей и зубов), липидов, гемопоэз, пролиферацию хрящевой ткани, увеличивает васкуляризацию органов, проницаемость гистогематических барьеров, сперматогенез. В железе найдены факторы стимуляции роста нервов и эпителия, дающие многочисленные эффекты. Накоплены факты о связи слюнных желез с активностью щитовидной, паращитовидной желез, гипофизом, надпочечниками, поджелудочной железой, тимусом. Желудок выполняет многие не пищеварительные функции. Его сок обладает высокой бактерицидностью, содержит антианемический фактор Касла (транскоррин), про-, антикоагулянты и фибринолитики. В желудке образуется ряд регуляторных пептидов и аминов широкого спектра физиологической активности. Больше других отделов ЖКТ эндокринная функция присуща слизистой 12-перстной кишки. С учетом того, что 12-перстная кишка является «гипофизом брюшной полости» (А. М. Уголев), становится понятным возникновение широкого спектра нарушений обмена веществ при удалении в экспериментах двенадцатиперстной кишки, при ее клинической патологии и дуоденэктомии. Секрет поджелудочной железы принимает участие в регуляции микрофлоры кишечника, трофики его слизистой оболочки и скорости обновления ее эпителиоцитов. Хроническая потеря сока поджелудочной железы вызывает глубокие нарушения углеводного, жирового, белкового и водно-солевого обмена, деятельности кроветворных органов и некоторых эндокринных желез. Эти нарушения временно купируются подкожным введением нативного панкреатического секрета, что свидетельствует о содержании в нем важных веществ. Велика роль в обмене веществ эндокринного аппарата поджелудочной железы. Железа образует ряд регуляторных пептидов (ВИП, гастрин, энкефалин, ПП) и ферментов (в том числе калликреин), липоксин — «гормон жирового обмена», ваготонин, повышающий тонус парасимпатической части автономной нервной системы. Кишечник участвует во многих видах обмена и гомеостаза, содержит и выделяет многие регуляторные пептиды. Слизистая оболочка тонкой кишки обладает тромбопластической, антигепариновой и фибринолитической активностью. Многочисленные проявления патологии пищеварительной системы обусловлены не только нарушением пищеварительных функций и ассимиляции пищи, но и важных не пищеварительных функций этой системы. Высвобождение гормонов желудочно-кишечного тракта из клеток происходит при действии на них других регуляторных пептидов, при механическом и химическом воздействии на эндокринные клетки, поступающим из просвета желудочно-кишечного тракта. В целом пути передачи информации в ЖКТ очень разнообразны. 5. Экскреторная функция. Пищеварительные железы и кишечник выводят из крови в ходе секреции и путем рекреции многие эндогенные и экзогенные вещества, участвуя таким образом в сохранении гомеостаза организма. Так, экзосекреция железами желудка Н+ и HC03- поджелудочной железой HCO3- имеет существенное значение в поддержании постоянства кислотно-основного состояния организма. Путем выделения в полость пищеварительного тракта метаболитов (первая группа выводимых веществ) организм освобождается от них (например, выделение в составе желудочного сока мочевины). Вторая группа веществ выводится из крови и депонируется в содержимом пищеварительного тракта (например, вода и растворенные в ней неорганические соли). Третья группа выделенных с секретом в химус веществ подвергается гидролизу, всасывается и включается в метаболизм (например, белки в количестве 60 г в сутки, что немаловажно для эндогенного питания). Четвертая группа веществ этих трансформаций не претерпевает, но участвует в пищеварительной деятельности и циркулирует между кровотоком и содержимым пищеварительного тракта (например, кишечно-печеночная циркуляция желчных кислот). В пищеварительный тракт выводятся и экзогенные вещества: ряд лекарственных, токсичных веществ, попавших в кровоток энтеральным и парентеральным путем. 6. Инкреция (эндосекреция) пищеварительных ферментов. Часть ферментов, синтезируемых пищеварительными железами, транспортируются в лимфу и кровь из интерстициальной жидкости, куда попадают инкреторным путем непосредственно из гландулоцитов, покидая их через базолатеральные мембраны; резорбируются из протоков желез и из тонкой кишки, высвобождаются из разрушенных гландулоцитов. Чем больше секреторных клеток, продуцирующих данный фермент, тем выше показатели его экзосекреции в составе сока и инкреции — содержание и активность в крови, ренальное и экстраренальное выделение этого фермента. При повышении сопротивления оттоку секрета из железы (обтурация протока, отек слизистой оболочки желудка, повышение давления в полости, куда выводится секрет) экзосекреция снижается, но возрастает транспорт ферментов в кровь. Стимуляция секреции желез на эндосекреции ферментов отражается в меньшей мере, чем на их экзосекреции. Инкретированные ферменты в крови находятся в свободном и связанном с транспортными белками и форменными элементами состояниях. Из крови ферменты адсорбируются эндотелием кровеносных сосудов. Есть свидетельства участия инкретированных ферментов в гидролизе пищевых веществ крови и лимфы, т. е. эти ферменты включены в метаболизм всего организма. Ферменты крови выполняют и регуляторную роль — тормозят секрецию одноименных ферментов, но могут усиливать секрецию других ферментов данной железы. |
|