Методичка ОХТ. Практикум для студентов специальностей 148 01 01 Химическая технология производства и переработки неорганических материалов
Скачать 0.72 Mb.
|
Табл. 1. Показатели качества воды в системах охлаждения
Требования к питательной воде паровых котлов (парогенераторов) энерготехнологических процессов обусловлены необходимостью предотвращения накипеобразования и коррозии поверхностей нагрева. К основным показателям качества питательной воды относятся: значение рН, общая жесткость, содержание кремниевой кислоты, растворенного кислорода, свободной углекислоты, железа, меди и других соединений. Качество питательной воды зависит от параметров генерируемого водяного пара. Требования к воде, используемой в качестве реагента, экстрагента, абсорбента и т. д., связаны с особенностями проводимых процессов и указываются в технологических регламентах конкретных химических производств. Питьевая вода в соответствии с ГОСТ 2874 должна содержать не более чем: бактерии – 100 штл; свободного хлора – 0,3 мгл; рН – 6,8–7,3; жесткости – 7 ммоль эквл; солесодержание – менее 1 гл; кроме этого ограничено количество тяжелых (Мо, W, Cr), легких (Ве, Al), радиоактивных (Sr, Ra) и ядовитых (As, Ta) элементов. Вода должна быть прозрачной, без цвета и не иметь запаха. Для большинства производств основным показателем служит жесткость воды, обусловленная присутствием в ней солей кальция и магния. Жесткость выражается в ммоль экв/л ионов Са и Mg. Различают три вида жесткости: временную, постоянную и общую. Временная жесткость обусловлена присутствием в воде гидрокарбонатов кальция и магния. Эти соли сравнительно легко удаляются из воды кипячением за счет образования нерастворимых средних и основных солей, которые выпадают в виде плотного осадка (накипи), согласно следующим химическим реакциям: Са(НСО3)2 = СаСО3 + Н2О + СО2; 2Mg(НСО3)2 = MgСО3 Mg(OH)2 + Н2О + 3СО2. Постоянная жесткость обусловлена присутствием в воде хлоридов, сульфатов, нитратов кальция и магния. Эти соли при кипячении из воды не удаляются. Временная и постоянная жесткости в сумме дают общую жесткость. Природные воды по жесткости классифицируются следующим образом (ммоль экв/л ионов Са и Mg): очень мягкая – 0,5–1,5; мягкая – 1,5–3,0; средняя – 3,0–6,0; жесткая – 6,0–10,0; очень жесткая – более 10,0. Окисляемость воды характеризуется присутствием в воде органических примесей и выражается в милимолях кислорода, который расходуется на окисление веществ, находящихся в 1 л воды. Природную воду перед использованием в производстве подвергают очистке различными методами в зависимости от характера примесей и требований, предъявляемых к воде. 2.3. Промышленная водоподготовка Основой промышленной водоподготовки является совокупность физических и физико-химических процессов, направленных на очистку воды от механических примесей, взвешенных и коллоидных частиц, растворенных солей и газов. Промышленная водоподготовка включает в себя ряд последовательных технологических стадий, обеспечивающих очистку воды от механических примесей, взвешенных и коллоидных частиц, растворенных солей и газов. Очистка воды от примесей (водоподготовка) состоит из следующих операций: отстаивание крупных частиц, осаждение коллоидных частиц (коагуляция), умягчение и деионизация воды, дегазация, обеззараживание. Отстаивание осуществляется в непрерывно действующих специальных аппаратах-отстойниках, которые представляют собой резервуары большого диаметра. В процессе отстаивания под действием силы тяжести грубодисперсные примеси оседают на дно и удаляются из отстойников на фильтрацию. Осаждение взвешенных и коллоидных частиц (мельчайших коллоидных частиц и белковых веществ) проводят путем их коагуляции. Коагуляция воды – это процесс укрупнения мелкодисперсных частиц в результате их объединения в более крупные агрегаты. Процесс коагуляции используется для выделения из воды коллоидно-дисперсных частиц размером 10–5–10–7 см. Коагуляция может быть реагентной или электрохимической в зависимости от способа введения коагулянта в очищаемую воду. Если коагуляцию проводят путем добавления к природной или сточной воде специальных веществ, она называется реагентной. Вещества, которые вводят в воду с целью выделения из нее коллоидно-дисперсных частиц, называются коагулянтами. Коллоидные частицы имеют на своей поверхности двойной электрический слой, одна часть которого зафиксирована на поверхности раздела фаз, а другая – подвижная. Разность потенциалов, которая возникает между подвижной и неподвижной частями двойного слоя, имеет название дзета-потенциал (-потенциал). Наличие этого потенциала и обуславливает высокую агрегативную устойчивость коллоидных систем. Под агрегативной устойчивостью понимают способность противостоять слипанию частиц, т. е. способность системы сохранять мельчайшие взвешенные и коллоидные частицы. Тонкодисперсные коллоидные растворы (золи, микроэмульсии) отличаются от грубодисперсных суспензий (взвесей) именно высокой агрегативной устойчивостью, обусловленной тем, что броуновское движение обеспечивает практически неограниченную их кинетическую устойчивость. Для разрушения таких систем необходимо уменьшить величину -потенциала до определенного критического значения. Это и достигается путем добавления коагулянта. В качестве коагулянтов наибольшее распространение получили соли (сульфаты, хлориды) алюминия и железа, а также их смеси в различных соотношениях. Эти соли, образованные многозарядными катионами слабых оснований и анионами сильных кислот, гидролизуются ступенчато по следующей схеме: [Al(H2O)6]3+ + H2O [Al(H2O)5OH]2+ + H3O+; [Al(H2O)5OH]2+ + H2O [Al(H2O)4(OH)2]+ + H3O+; [Al(H2O)4(OH)2]+ + H2O [Al(H2O)3(OH)3] + H3O+. Гидратированные ионы алюминия в процессе гидролиза отдают протон от координированной молекулы воды, последовательно образуя в растворе комплексные ионы. Вследствие гидролитической полимеризации путем сочленения мономеров оксомостиками Al – O – A образуются также полиядерные гидроксокомплексы. Вследствие гидролиза и гидролитической полимеризации ионов алюминия образуется золь продуктов гидролиза солей алюминия, который коагулирует с образованием агрегатов и в конечном счете более или менее крупных хлопьев. Образование золя можно представить следующей схемой: [Al(H2O)5OH]2+ [Al2(H2O)4(OH)2]4+ [Al13O4(H2O)12(OH)24]7+ золь. В природной или оборотной воде, цветной или мутной, содержатся коллоидный гумус и минеральные взвешенные вещества, которые имеют, как правило, отрицательный заряд. Образовавшиеся в процессе гидролиза коагулянта положительно заряженные полиядерные аквагидроксокомплексы алюминия или железа – мицеллы и более крупные шарообразные агрегаты золя, а также менее полимеризованные аквагидроксокомплексы хемосорбируются на поверхности глинистых или других минеральных частиц очищаемой воды. При этом происходит взаимодействие с гидратной оболочкой глинистой частицы, образование водородных связей и одновременно нейтрализуется заряд. В результате этого частицы взвеси покрываются плотным слоем аморфных частиц продуктов гидролиза солей алюминия или железа. Таким образом, в коагуляции участвуют разнородные частицы, т. е. происходит гетерокоагуляция. В этом случае взвешенные вещества (замутнители) играют роль поверхности, на которой протекают первые этапы адсорбционно-коагуляционного взаимодействия и способствуют образованию плотных агрегированных структур. Благодаря большому количеству центров кристаллизации образующиеся частицы являются плотными. Глинистые минералы, покрытые «шубой» более мелких шарообразных частиц продуктов гидролиза (гидроксидов алюминия и железа), соединяются между собой посредством их структур с образованием огромного количества мельчайших хлопьев. Последние агрегируют в более крупные и, достигнув определенных размеров, оседают под действием силы тяжести. При этом происходит осветление воды. В процессе очистки воды, особенно от окрашенных (гумус и другие органические вещества), а также от взвешенных минеральных веществ, гидролиз коагулянтов является одним из наиболее важных процессов коагуляции, и степень его протекания влияет как на качество очищаемой воды, так и на расход коагулянта. Первоначальным этапом очистки воды, по-видимому, является взаимодействие полиядерных аквагидрокомплексов с ионно- и молекулярнорастворенными, а затем и с коллоидными веществами. Процесс обесцвечивания преимущественно протекает на стадии формирования шарообразных агрегатов, а осветления – на стадии построения цепочечных структур. Скорость образования хлопьев возрастает при увеличении температуры воды и при перемешивании за счет увеличения числа столкновений между частицами. Для быстрого осаждения в отстойниках частицы должны быть размером около 0,3–0,7 см и иметь большую плотность. Рыхлые и легкие хлопья образуются при коагуляции цветных маломутных вод, а более плотные и тяжелые (1,01–1,03 кгл) с повышенным объемом твердых частиц получаются при высоком содержании взвеси в обрабатываемой воде. Для проведения процесса реагентной коагуляции большое значение имеет доза коагулянтов. Это обусловлено не только эффективностью очистки от коллоидных частиц, но и требованиями к содержанию в очищенной воде солей алюминия и железа (коагулянтов). Оптимальная величина дозы коагулянта зависит от свойств дисперсной системы, температуры, количества взвешенных и коллоидно-дисперсных веществ, цветности, ионного состава дисперсной среды, значения рН и других физико-химических свойств. Доза коагулянта и другие параметры коагуляции должны быть такими, чтобы обеспечить наилучшие условия для ее протекания, исключив нежелательные побочные явления. Так, при недостаточной дозе коагулянта не достигается требуемый эффект очистки, а при избытке наряду с перерасходом дорогостоящего реагента в некоторых случаях может ухудшиться коагуляция. При определенных условиях отмечается повышенное содержание остаточных алюминия или железа в очищаемой воде. Так, вследствие образования растворимых основных сульфатов алюминия при рН < 4,5 или алюмината натрия при рН > 8,5 проведение коагуляции целесообразно в интервале значений рН 4,5–8,5. Большое влияние на дозу коагулянта оказывает температура воды. Со снижением температуры доза коагулянта сильно возрастает, особенно в случае мутных вод. С уменьшением мутности воды влияние температуры сказывается в меньшей мере. Доза коагулянта возрастает при увеличении содержания в воде взвешенных веществ, особенно для тонкодисперсной взвеси. В настоящее время пока нет формул для однозначного определения дозы коагулянтов, учитывающих многообразие свойств дисперсной системы. Поэтому ее определяют методом пробного коагулирования. Однако в некоторых случаях для ориентировочных расчетов доза коагулянта [(Al2(SO4)3, FеCl3 или FeSO4] (в мг/л) для цветных вод может быть определена по формуле Д = 4, (1) где Ц – цветность воды, град. Доза коагулянта, которая необходима для снижения -потенциала коллоидных частиц, может быть приблизительно рассчитана по следующим эмпирическим формулам: Дк = 3,5 , (2) а для цветных Дк = 4 , (3) где Дк – доза коагулянта в расчете на безводную соль, мгл; М – содержание в воде взвешенных частиц (мутность), мгл. При коагуляции воду подщелачивают до значения рН в пределах 6,5–8,5 для удовлетворительного гидролиза коагулянтов. Для подщелачивания воды и связывания образующегося при этом СО2 применяют различные щелочные реагенты, чаще гашеную известь, которая подается в воду в виде суспензии (известкового молока). При известковании происходит снижение гидрокарбонатной жесткости воды и содержания СО2. Одновременно с этим за счет протекания реакций Са(НСО3)2 + Са(ОН)2 = 2СаСО3 + 2Н2О; Mg(НСО3)2 + 2Са(ОН)2 = 2СаСО3 + Mg(OH)2+ 2Н2О; FeSO4 + Ca(OH)2 = CaSO4 + Fe(OH)2; Fe2(SO4)3 + 3Ca(OH)2 = 3CaSO4 + 2Fe(OH)3; H2SiO3 + Ca(OH)2 = CaSiO3 + 2H2O; CO2 + Ca(OH)2 = CаСО3 + Н2О уменьшается солесодержание, концентрация грубодисперсных примесей, соединений железа и кремниевой кислоты. Процессы коагуляции и известкования, как правило, совмещаются и проводятся одновременно в одном аппарате – осветлителе. Окончательная очистка от осадка осуществляется с помощью процесса фильтрования. Фильтрацию воды проводят на фильтрах разных конструкций. Наиболее известными из используемых в промышленности являются следующие: механические и песчаные фильтры, барабанные и ленточные вакуум-фильтры.Умягчение воды относится к основным процессам водоподготовки, которые состоят в удалении солей кальция и магния из воды. Способы умягчения делятся на физические, химические и физико-химические. Физические способы – термический (кипячение), дистилляция и вымораживание. Термическим способом выделяются соли временной жесткости, например: Са(НСО3)2 = СаСО3 + Н2О + СО2; 2Mg(НСО3)2 = MgСО3 Mg(OH)2 + Н2О + 3СО2. Химические способы умягчения воды заключаются в обработке ее химическими соединениями (гидроксиды кальция, натрия, карбонат натрия (кальцинированная сода), фосфат натрия), в результате чего образуются труднорастворимые соединения кальция и магния. Например: Са(НСО3)2 + Са(ОН)2 = 2СаСО3 + 2Н2О; Mg(НСО3)2 + 2Са(ОН)2 = 2СаСО3 + Mg(OH)2+ 2Н2О; Са(НСО3)2 + 2NaOH = CaCO3 + Na2CO3 + 2Н2О; MgSO4 + Na2CO3 = MgCO3 + Na2SO4; 3Са(НСО3)2 + 2Na3PO4 = Ca3(PO4)2 + 6NaHCO3; 3MgCl2 + 2Na3PO4 = Mg3(PO4)2 + 6NaCl2; 2СаSO4 + 2Na3PO4 = Ca3(PO4)2 + 2Na2SO4. Из химических способов наиболее эффективным является комбинированный известково-содовый в сочетании с фосфатным. Процесс умягчения основывается на следующих реакциях:
Са(НСО3)2 + Са(ОН)2 = 2СаСО3 + 2Н2О; Mg(НСО3)2 + 2Са(ОН)2 = 2СаСО3 + Mg(OH)2+ 2Н2О; FeSO4 + Са(ОН)2 = Fe(ОН)2 + СаSO4;СО2 + Са(ОН)2 = СаСО3 + Н2О;
MgSO4 + Na2CO3 = MgCO3 + Na2SO4; MgCl2 + Na2CO3 = MgCO3 + 2NaCl; CaSO4 + Na2CO3 = CaCO3 + Na2SO4;
3Са(НСО3)2 + 2Na3PO4 = Ca3(PO4)2 + 6NaHCO3; 3MgCl2 + 2Na3PO4 = Mg3(PO4)2 + 6NaCl2. Растворимость фосфатов кальция и магния ничтожно мала, что обеспечивает высокую эффективность фосфатного метода. Физико-химические методы умягчения воды делятся на электрохимические, основанные на использовании электродиализа, электроосмоса, и ионообменные. Наиболее широко применяют методы ионного обмена, основанные на свойствах некоторых труднорастворимых твердых веществ (ионитов) замещать свои подвижные функциональные группы ионов на ионы солей, растворенных в воде. Иониты делятся на катиониты (с подвижным катионом) и аниониты (с подвижным анионом). Катиониты, в свою очередь, делятся на Na-катиониты, Н-катиониты и NH4-катиониты. Аниониты, как правило, имеют подвижные гидроксильные группы, поэтому они называются ОН-анионитами. Неподвижная часть ионита называется матрицей или каркасом. По своему происхождению иониты делятся на природные и синтетические. Например, в качестве Na-катионита используются алюмосиликаты (цеолиты, пермутиты) с общей формулой Na2O[Al2O3 2Si2O3 nH2O], глауконит и другие, а также органические синтетические вещества – синтетические смолы, сульфированные угли, сополимеры стирола с дивинилбензолом. К Н-катионитам относятся синтетические смолы, например карбамидные. Основными характеристиками ионитов являются: статическая и динамическая объемная емкость, набухание, механическая и химическая устойчивость, термоустойчивость. Процессы умягчения воды методом ионообмена можно представить следующим образом: Na2O[R] + CaCl2 CaO[R] + 2NaCl; 2H[R] + CaSO4 Ca[R]2 + H2SO4; 2H[R] + Ca(HCO3)2 Ca[R] + 2H2O + 2CO2, где R – не принимающая участия в ионообмене часть молекул ионита. Катионообменная емкость катионитов постепенно уменьшается, поэтому их регенерируют промывкой растворами NaCl (для Na-катионитов) или кислоты (для Н-катионитов): СаО[R]2 + 2NaCl 2Na[R] + CaCl2; СаО[R]2 + 2HCl 2H[R] + CaCl2; MgO[R]2 + H2SO4 2H[R] + MgSO4. Преимущества катионообменного метода умягчения воды – это простота аппаратурного оформления и компактность, высокая степень умягчения воды (до 0,04–0,07 ммоль эквл), простота обслуживания. Недостатки – наличие сточных вод, образующихся при регенерации катионитов. Применение для подготовки воды, наряду с катионитами, анионитов позволяет удалить не только все растворенные в ней соли (обессоливание воды), но и содержащиеся кислоты и щелочи, т. е. провести деионизацию. Схема ионообменной установки для деионизации воды приведена на рис. 2. Вода после предварительной очистки от гетерогенных и коллоидных примесей в отстойнике сначала подается на Н-катионитовый фильтр (1), где очищается от катионов (Са2+, Mg2+, Na2+), далее поступает на анионитовый фильтр (2) для удаления анионных групп. Рис. 2. Схема ионообменной установки: 1 − катионитовый фильтр; 2 − анионитовый фильтр; 3, − дегазатор; 4 − сборник очищенной воды; 5 − слой песка; 6 − слой катионита Протекающие при этом процессы можно описать следующими уравнениями: – катионный обмен 2Н[R] + CaSO4 H2SO4 + Ca[R]2; 2H[R] + Mg(NO3)2 2HNO3 + Mg[R]2; H[R] + NaCl HCl + Na[R]; H[R] + NaОН Na[R] + Н2О; 2Н[R] + Na2CO3 2Na[R] + Н2О + CO2; – анионный обмен 2[R]OH + H2SO4 2H2O + [R]2SO4; [R]OH + HNO3 H2O + [R]NO3; [R]OH + HCl H2O + [R]Cl. Для удаления из воды углекислого газа ее пропускают через дегазатор (3) и направляют потребителям. С целью регенерации ионитов используют регенерирующие растворы – кислоты и щелочи. В то время как один блок ионообменной установки работает на очистку, другой – на регенерацию. Регенерация ионитов осуществляется их промывкой растворами кислоты или щелочи: Са[R]2 + H2SO4 2H[R] + CaSO4; Са[R]2 + 2HCl 2H[R] + CaCl2; [R]2SO4 + NaOH Na2SO4 + [R]2OH; [R]NO3 + NaOH NaNO3 + [R]OH. Дегазация – это выделение из воды растворенных газов с целью уменьшения коррозии оборудования. Выполняется физическими и химическими способами. Физические способы выделения из воды газов включают методы десорбции путем нагревания паром (термической деаэрации) в соответствующих аппаратах – деаэраторах (вакуумных и повышенного давления). Сущность химических методов дегазации – связывание растворенных газов при помощи реагентов в труднорастворимые химические соединения. Например, для выделения углекислого газа воду пропускают через фильтр с гашеной известью или добавляют к воде известковое молоко. Для выделения из воды кислорода используют фильтры с железными стружками: Са(ОН)2 + СО2 СаСО3 + Н2О; 4Fe + 3O2 = 2Fe2O3. Обеззараживание воды включает удаление из нее микроорганизмов, бактерий путем хлорирования, озонирования и кипячения. Например, для хлорирования воды используется жидкий хлор, гипохлорит кальция, хлорамин. Так, при обработке воды гипохлоритом кальция протекают следующие реакции: Са(ClO)2 + CO2 + H2O = CaCO3 + 2HClO; HClO HCl + O. Вода обеззараживается также ионами серебра, под воздействием ультрафиолетовых лучей и ультразвуковых волн. 2.4. Методика выполнения работы 2.4.1. Порядок выполнения работы по умягчению воды Известково-содовый метод1) Определить временную, постоянную жесткость исследуемой воды и количество в ней диоксида углерода. 2) Рассчитать требуемое количество извести и соды для умягчения воды. Например, временная (карбонатная) жесткость воды составляет 6 ммоль эквл, постоянная – 4 ммоль эквл, диоксид углерода – 9 мгл. Тогда необходимое количество гидроксида кальция составит = (6 + 9 1 22) 74 2 = 237,1 мгл, где 1 22 – фактор пересчета СО2 в ммоль эквл. Количество соды рассчитывается следующим образом: = 4 106 2 = 212 мгл. 3) Рассчитать количество извести и соды для умягчения 300 мл воды, взвесить с точностью до 0,01 г, смешать с исследуемой водой, взболтать и поставить отстаиваться. 4) Отфильтровать воду, отбросив первые порции фильтрата. 5) Проанализировать фильтрат на содержание солей кальция и магния. Фосфатный метод 1) Определить общую жесткость образца исследуемой воды. 2) Подсчитать необходимое для умягчения 300 мл воды количество Na3PO4 12H2O или другой фосфорсодержащей соли. 3) Взвесить рассчитанное количество фосфата натрия, добавить в 300 мл исследуемой воды, взболтать и поставить отстаиваться. 4) Отфильтровать воду, отбросив первые порции фильтрата. 5) Проанализировать фильтрат на содержание кальция и магния. Ионообменный метод 1) Провести регенерацию катионита в катионообменнике, для чего пропустить через колонку 6%-ный раствор поваренной соли или соляной кислоты в количестве 700 мл. Раствор следует пропускать через колонку с такой скоростью, чтобы общее время прохождения раствора через катионит составляло 25–30 мин. Регенерированный катионит отмыть от избытка NaCl или HCl водой до полного исчезновения ионов хлора (проба с AgNO3), при этом расходуется 1000 мл дистиллированной воды. 2) Определить жесткость исследуемой воды, после чего пропустить ее через катионит. 3) Проанализировать воду после катионита на содержание ионов кальция и магния. 2.4.2. Порядок выполнения работы по обессоливанию воды 1) Провести регенерацию катионита раствором кислоты (HCl, H2SO4), как было указано выше. 2) Провести регенерацию анионита в анионообменнике, для чего пропустить через колонку 6–8%-ный раствор NaOH в количестве 600–700 мл. Время прохождения раствора через анионит – 25–30 мин. 3) Регенерированный анионит отмыть от избытка NaOH водой в количестве 1000 мл. 4) Определить жесткость исследуемой воды и наличие в ней анионов (Cl–, SO42–, NO3–). 5) Пропустить исследуемую воду последовательно сначала через катионит, затем вытекшую воду через анионит. 6) Проанализировать исследуемую воду на содержание ионов кальция и магния и качественно на наличие анионов Cl–, SO42–, NO3–. 2.4.3. Порядок проведения работы по коагуляции воды 1)Провести определение мутности и значения рН воды. Мутность воды определяется фотоколориметрическим методом. Количество твердой фазы в воде находят по калибровочной кривой, построенной в координатах оптическая плотность – мутность воды, мг/л взвешенных частиц. 2) Определить расчетным путем необходимое для коагуляции количество коагулянта (сульфата алюминия, железа (II), хлорида алюминия и др.). 3) Провести коагуляцию воды. Для этого 100–200 мл мутной воды перенести в мерный цилиндр на 250 мл; довести рН до заданного значения раствором известкового молока (10%-ный раствор по СаО) и добавить расчетное количество коагулянта. Коагуляцию проводить при интенсивном перемешивании в течение 30–60 с, после чего интенсивность перемешивания уменьшить. Перемешивание проводить в течение 2 мин, после чего исследуемую воду оставить в состоянии покоя и фиксировать продолжительность отстаивания. После отстаивания в кювету толщиной 3 мм слить осветленную воду и измерить оптическую плотность на фотоколориметре. По калибровочному графику определить мутность воды после коагуляции. 4) Рассчитать показатели процесса коагуляции. Коэффициент активности коагулянта рассчитывают по формуле = (М1 – М2) / , (4) где М1, М2 – мутность воды до и после коагуляции соответственно, мг/л; – доза коагулянта, мг/л. Степень коагуляции рассчитывают по формуле Хк = (М1 – М2) / М1. (5) 5) Степень осветления воды Хос, %, рассчитывается следующим образом: Хос = [(Н1 – Н2) 100] / Н1, (6) где Н1 – объем воды, залитой в цилиндр для осветления, мл; Н2 – объем неосветленной воды, мл. Для изучения кинетики осветления воды провести наблюдение за высотой столба осветленной воды, которую определяют по делениям измерительного цилиндра. Для этого нужно зафиксировать время, за которое нижняя граница осветленного слоя достигнет очередной метки через 5 или 10 мл. Скорость осветления воды v, %, рассчитывают как отношение высоты осветленного слоя нi ко времени i, за которое произошло осветление: v = нi / i = (Н1 – Н2) / (i 1 – i 2). (7) 6) Результаты исследования процессов умягчения, деионизации и коагуляции воды занесите в таблицу и постройте, согласно с заданием, графическую зависимость. 2.4.4. Методы анализа |