Главная страница
Навигация по странице:

  • § 2. Тропизмы и таксисы простейших

  • § 3. Функциональная организация нервной системы

  • Савельев. Происхождение мозга


    Скачать 1.82 Mb.
    НазваниеПроисхождение мозга
    АнкорСавельев
    Дата11.10.2022
    Размер1.82 Mb.
    Формат файлаdoc
    Имя файла[Savelev_S.V.]_Proishozhdenie_mozga(BookSee.org).doc
    ТипМонография
    #727619
    страница2 из 9
    1   2   3   4   5   6   7   8   9
    § 1. Взаимодействия с внешней средой

    Растение — самое большое и самое живучее существо на этой планете. Мамонтово дерево и Гигантский эвкалипт достигают высоты 120-150 м, а Долговечная сосна — возраста 4600 лет. Среди растений много крупных организмов, поэтому существуют проблемы со скоростью передачи информации об изменении химического состава или механического состояния окружающей среды. Все реакции развиваются медленно и связаны с морфогенетическими процессами перестройки всего организма. Конечно, есть примеры и относительно быстрых реакций листьев растений на прикосновение или при охоте на насекомых (см. рис. I-1, s), но все эти реакции осуществляются несопоставимо медленнее, чем у животных. При этом чем крупнее растение, тем медленнее видимые реакции на химические, механические и электромагнитные воздействия. Сложности заключаются в механизмах передачи и хранения информации. Полученная в зоне воздействия информация распространяется медленно или локализуется. Лист сжался от прикосновения, но только в месте контакта. Корень изменил направление роста, уперевшись в камень, но соседний корешок не узнает об этом и повторит его путь. Информация о воздействиях внешней среды сохраняется только в форме тела растений, как в своеобразной структурной памяти. Она хранится как индивидуальная форма, но не используется для оперативных целей. Размер растений предопределяет их инертность, а пожизненный адаптивный морфогенез компенсирует низкую скорость реакции на внешние воздействия. Растения адаптировались без специализированных тканей нервной системы, но не без аналогичных функций. Эти функции равномерно распределены между тканями растения и базируются на фундаментальных свойствах живых клеток.

    Совершенно другое впечатление производят одноклеточные организмы, содержащие и не содержащие хлорофилл. По сути дела, на уровне одноклеточных организмов царства растений и животных практически не различаются. Жгутиконосцы могут иметь фотосинтезирующие органеллы, а могут прекрасно жить и без них. Понятно, что в первом случае их надо отнести к растениям, а во втором — к животным. Это приводит к тому, что виды одного рода можно успешно относить к разным царствам, а систематическое разделение простейших на растения и животных довольно условно. Более того, эвгленовые жгутиконосцы могут в темноте становиться «чистыми» животными — гетеротрофами, а на свету — автотрофами. Следовательно, современная общая систематика живых организмов выглядит вполне естественно. Она предполагает существование прокариотных организмов

    15

    (Monera), которые подразделены на Архибактерий и Эубактерий. От последних произошли простейшие (Protista).Простейшие более не разделяются на животных и растения и представляют собой смешанную группу автогетеротрофных организмов. От неё берут начало и три царства многоклеточных организмов: растения, грибы и животные. Эта логичная классификация вполне подтверждается и общими рецептивными принципами как простейших, так и трёх основных групп многоклеточных. Во всех четырёх группах представлен рецепторный аппарат, состоящий из хемо-, механо- и фоторецепторов. Все клетки этих организмов обладают потенциалом покоя и спонтанной электрической активностью. Различия сводятся к механизмам передачи, хранения и использования получаемой из внешней среды информации. Простейшие в этом отношении являются в некотором роде идеальными моделями донервного поведения.

    § 2. Тропизмы и таксисы простейших

    Относительно небольшие размеры простейших дают возможность непосредственно использовать рецепторный аппарат мембраны для быстрого изменения поведения. Размер большинства простейших обычно не превышает нескольких миллиметров (рис. I-2). Это не значит, что нет более крупных одноклеточных. Известны виды, достигавшие нескольких десятков сантиметров, но поведенчески они были столь же пассивны, как и растения. Однако небольшие одноклеточные дают наиболее выраженный пример сложного и даже рефлекторного поведения. Сенсорный аппарат простейших сходен с таковым растений, но ч цитоплазматически намного более специализирован. Общая химическая чувствительность простейших хорошо известна. Простейшие прекрасно двигаются по градиенту пищевых растворов и избегают растворов щелочей, кислот и солей. Присутствие в растворах катионов калия, лития, натрия и аммония вызывает реверсию активности ресничек и жгутиков, которые служат для передвижения многих простейших. Надо отметить, что положительный и отрицательный хемотаксис инфузорий лёг в основу теории поведенческих тропизмов Ж. Леба.

    Тропизмами, или таксисами, Ж. Леб называл простые реакции растений и животных на свет, химические вещества, источники электромагнитных полей и т. д. Например, если животное двигалось в сторону света, Ж. Леб называл это положительным фототропизмом, если от света — отрицательным. Наиболее популярными были исследования, связанные с гелиотропизмом (движение к солнцу или от него), термотропизмом (движение к теплу или от него), хемотропизмом (движение к веществу или от него), геотропизмом (чувствительность к направлению гравитационных сил), тигмотропизмом

    16

    (чувствительность к механическому контакту), цитотропизмом (стремление клеток к адгезивному слипанию или разделению) и реотропизмом (движение в потоке воды). В основе учения Ж. Леба лежит универсальная способность цитоплазмы клеток всех живых организмов к раздражению. Поскольку этим свойством обладают все клетки, Ж. Леб делает вывод о единстве животных и растений, а заодно и о незначительной роли нервной системы. Он совершенно серьезно писал: «У животных, обладающих нервами, явления гелиотропизма вызываются теми же причинами (формой тела и раздражимостью протоплазмы клетки), как и у растений, не имеющих нервной системы. Таким образом, явления тропизма не могут основываться на специальных свойствах центральной нервной системы...». Несмотря на всю оригинальность таких представлений, теория Ж. Леба нашла многочисленных сторонников. Его последователи начали проверять раков на «хининовый таксис», червей на «солевой таксис», лягушек и рыб на «электрический таксис». Возникла даже разветвлённая система понятий, которые предусматривали различение таксиса и тропизма. Тропизмом стали называть изменение ориентации или направления роста прикреплённого организма. Обладателями тропизмов считали растения. Под таксисом подразумевали уже самодвижущийся организм, который или удалялся, или приближался к источнику раздражения (Iftode, Prajer, Frankel, 2001; Barbanera, Erra, Banchetti, 2002). Понятно, что такие «жизненно важные» таксисы и тропизмы не только ничего не добавляли к психологии, но и превращали зоопсихологию в теолого-лингвистическую науку. Сторонники теории тропизмов не остановились на уравнивании тропизмов животных и растений. Они успешно доказывали, что зрительное восприятие человека ничем не отличается от фототропизма инфузорий. Смысл этих доказательств состоял в поиске универсальной единицы поведения — «атома», который они называли тропизмом, или таксисом. Ж. Леб и его последователи считали, что, найдя некоторое количество универсальных единиц поведения, они смогут «вычислить» или «расчленить» любое сложное поведение животного и мышление человека.

    Несмотря на все заблуждения и фантазии, сторонники таксиче-ской теории Ж. Леба были хорошими экспериментаторами. Работая на одноклеточных организмах, они привлекли огромное внимание к изучению их биологии и поведения. В многократно повторённых экспериментах было установлено такое интереснейшее свойство одноклеточных организмов, как привыкание. Эти эксперименты проводили на парамециях, которых предварительно приучали к определённой температуре, а затем помещали в ванночку с температурным градиентом. Оказалось, что оптимальной для парамеций является температура 24-28°С.

    17

    Рис. I-2. Микроскопические пресноводные организмы.



    На уровне микроскопических размеров преимущества нервной системы почти незаметны, что позволяет одноклеточным успешно конкурировать с многоклеточными организмами, обладающими примитивной нервной системой, а-в пресноводные гидры с диффузной нервной системой, а гидра; б гидра после прикосновения к ней; в гидра в спокойном состоянии.

     

    18

    24

    Рис. I-3. Донервная интеграция ответов на внешние воздействия у растений (точки) и свободноживущих простейших (пунктир).



    Различия сводятся к скорости ответа на воздействие, которая зависит от размера тела. Скорость реакций высокая у простейших, но у растений есть структурная «память», сохраняющая результаты предыдущих воздействий. Площади образовавшихся полей могут рассматриваться как критерии оценки направлений адаптивности донервных организмов.

    построена на биохимических внутриклеточных процессах. Это делает невозможным использование механизмов индивидуального научения. Следовательно, основным принципом донервного взаимодействия с внешней средой является общая клеточная чувствительность, которая имеет избирательный характер. Общая клеточная чувствительность построена на трёх различных рецепторных механизмах: механочувствительности, хемочувствительности и электромагнитной рецепции. Однако эти условные «сенсорные варианты восприятия мира» далеко не равноценны. Надо подчеркнуть, что иллюзию осознанности поведения одноклеточных формирует скорость ответа на неспецифические влияния. Основные различия построены на скорости реакции при внешнем воздействии на организм. Если организм по сравнению с нами маленький и реагирует быстро, то нам кажется, что реакции осознанны и сходны с поведением животных, имеющих нервную систему. Отсутствие оперативной индивидуальной памяти компенсируется генетически детерминированными реакциями или направленным морфогенезом. Если бы растения и простейшие располагали индивидуальной памятью, они были бы самыми опасными существами на планете. К нашему счастью, для этого нужна нервная система.

    25

    Зачем нужна нервная система?

    Нервная система нужна не всем. Она не нужна тем, кто будет тысячелетиями неподвижен. Их «быстрый ответ» на внешние воздействия растягивается на десятки лет, им не надо ни быстрой реакции, ни мгновенной перестройки организма. Растения решили свои проблемы при помощи автотрофности, размера и времени жизни. Существует и другой вариант жизни без нервной системы. Можно поселиться в чудесном месте, где много пищи, организм защищен и согрет. Жизнь солитёра вполне соответствует этим требованиям. Солитёр и растения не обладают нервной системой. У растений нервной системы никогда не было, а у солитёра она полностью редуцирована. В обоих случаях её функции выполняют отдельные клетки, обладающие химической, электромагнитной и механической чувствительностью. Действительно, в оптимальных условиях питания и размножения нервная система вообще не нужна. Однако завидная для многих приматов судьба паразитических червей скорее исключение, чем правило в животном мире. Для большинства организмов окружающий мир слишком нестабилен и требует постоянного приспособления к нему. Адаптация к изменяющимся условиям должна быть генерализованной и охватывать все структуры организма. Таким органом быстрого и интегрированного реагирования стала нервная система.

    Нервная система нужна тем, кто быстро двигается, активно вступает в контакт с разнообразными условиями внешнего мира и вынужден постоянно приспосабливаться. Быстротечный конформизм — причина формирования нервной системы. Действительно, нервная система малоподвижных организмов окажется невероятно упрощённой по сравнению с нервной системой активных животных. Актинии, ас-цидии, малоподвижные моллюски с крупными раковинами, коралловые полипы и многие другие животные имеют несложную нервную систему (рис. 1-4, а).У животных, прикреплённых к конкретному месту и занимающихся фильтрацией или захватом проплывающей пищи, очень простые задачи. Первая — рецепция пищевого объекта, вторая — его захват и переваривание. Для этого достаточно простых контактных рецепторов и органов удержания пищи, что, собственно, мы и видим у свободноживущих гидр и полипов. Их диффузная нервная система имеет небольшое окологлоточное нервное кольцо, которое и интегрирует несложные рефлексы.

    Тем не менее эти простые реакции протекают на несколько порядков быстрее, чем морфогенетические перестройки тела у растений

    26

    27

    Они могут не только реагировать на различные воздействия, но и генерировать электрические сигналы. Импульсы формируются в аксонных холмиках и передаются по аксонам нейронов на значительные расстояния (см. рис. 1-4, б). Скорость проведения такого импульса может составлять от 0,13 м/с у актиний до 120 м/с в А-волокнах у человека. Генерация электрических сигналов и их распространение по поверхности мембраны нейронов — фундаментальное свойство нервной ткани животных. Однако при незначительном размере нейронов необходимо передавать этот сигнал от одной клетки к другой. Это было обеспечено увеличением размеров нервных клеток и их отростков. Нервные клетки имеют размер от нескольких микрон до нескольких метров. Самые большие клетки обнаружены в моторных отделах спинного мозга китообразных. Нейроны — самые крупные клетки животных, передающие информацию со скоростью около 400 000 км/ч.

    § 3. Функциональная организация нервной системы

    Нервная система необходима для быстрой интеграции активности различных органов многоклеточного животного. Иначе говоря, объединение нейронов представляет собой систему для эффективного использования сиюминутного индивидуального опыта. Однако персональную опытность нужно как-то получить, причём довольно быстро. Скорость получения информации определяет её ценность. Чем «свежее» и точнее информация, тем адекватнее можно не неё среагировать. Для быстрого получения дифференцированных сведений о внешнем мире нужны специальные чувствительные органы или сенсорные системы. Эти сенсорные органы не могут существовать сами по себе. Следовательно, нервная система необходима для дифференциации и сравнения внешних сигналов от разных источников. Эти источники возникли из неспецифической чувствительности любой живой клетки, но постепенно специализировались.

    В основе работы самых разных органов чувств лежат те же три рецепторных принципа, известных для растений и простейших: химическая, физическая и электромагнитная чувствительность мембран. Из этих трёх источников внешних сигналов организм животных создал огромное разнообразие органов чувств. Механочувствительность реализуется в виде слуха, органов боковой линии, грави- или терморецептора. Химическая чувствительность может быть представлена дистантным обонянием или контактным органом вкуса, осморецептором или рецептором парциального давления кислорода. Чувствительность к электромагнитным волнам обусловлена рецепторами внешних или собственных полей, светочувствительностью либо способностью воспринимать магнитные поля планеты и Солнца.

    28

    32

    Рис. I-5. Функциональные блоки сложной нервной системы.



    В архитектуре схемы учтены разнообразные органы чувств, системы сравнения одномоментной информации и её сопоставления с предыдущим опытом, который хранится в памяти. Появление памяти и рецепторов эффекторной системы является новым этапом эволюции нервной системы. Эффекторный блок включает в себя железы, изменение концентрации нейрогормонов и мышечные ответы. Контроль за состоянием эффекторных органов достигается рецепторами эффекторной системы.

    Такие эксперименты демонстрируют принципиальные отличия животных, обладающих памятью, от существ, не имеющих никаких способов сохранять информацию о внешнем мире и о себе. Память обременительна. Её надо энергетически поддерживать, «бесполезно» тратя энергию организма. Память о явлении может пригодиться, а может никогда не понадобиться. Следовательно, роскошная возможность что-либо запомнить — удел весьма «состоятельных» животных. Только сравнение разнородных сигналов с прошлым опытом позволяет сделать адекватный поведенческий выбор. Этими свойствами и обладает нервная система. Она нужна животным с высоким метаболизмом, активно адаптирующимся к внешней среде, использующим различные органы чувств, хранящим и сравнивающим свой индивидуальный опыт. Нервная система позволила увеличить скорость реагирования на внешние раздражители и повысить эффективность адаптивных реакций. Животные с нервной системой смогли обходиться обратимыми физиологическими процессами для адаптации, которые не требовали морфологической перестройки организма. Однако, получив эти преимущества, обладатели нервной системы столкнулись с новыми и неожиданными проблемами.

    33

    Энергетическая цена и размеры мозга

    Одной из важнейших проблем, с которой сталкивается обладатель нервной системы, — биологическая стоимость этого замечательного органа. Насколько интегративные функции нервной системы окупают затраты на её содержание? Этот вопрос является ключевым в понимании направления и основных путей эволюции нервной системы животных. Абсолютные размеры мозга коррелируют с затратами на его содержание, а относительные — с долей энергетических затрат всего организма. В связи с этим логично рассматривать энергетические затраты организма на нервную систему и её размеры параллельно. По устоявшейся, но необъяснимой традиции под размерами нервной системы понимают массу головного мозга (рис. 1-6). Относительную массу вычисляют как отношение массы мозга к массе тела. Исходя из этих соотношений, определяют уровень обмена и соответствующую долю энергетических затрат на содержание нервной системы. В этих пропорциях, как правило, остаётся неучтённой масса спинного мозга, периферических ганглиев и нервов. Они так же, как и мозг, потребляют кислород и питательные вещества; общая масса спинного мозга и периферической нервной системы может существенно превышать массу головного мозга. Достаточно посмотреть на центральную нервную систему лягушки или змеи (рис. 1-7, а, г). Если добавить к спинному и головному мозгу массу периферической нервной системы, то общее количество нервной ткани будет в несколько раз больше, чем мы привыкли считать.

    35

    Рис. I-7. Сравнительные размеры спинного и головного мозга у животных различных групп.

    Головной и спинной мозг почти равны по массе у лягушки (а); у зелёной мартышки и игрунки масса головного мозга намного превышает массу спинного (6, в). Спинной мозг змеи по размерам и массе во много раз превышает головной мозг (г).



    Приматы (мелкие

    ) 1/40

    Полёвка (мышь)

    1/47

    Человек

    1/50

    Бурозубка

    1/50

    Домашняя кошка

    1/80


    36

    40

    созданное разнообразие. Надо отметить, что у породистых собак относительная масса мозга почти в 2 раза меньше, чем у беспородных.

    Существует индивидуальная изменчивость размеров мозга у различных видов в природе. В специальных исследованиях на 25 зайцах-русаках (Lepus europaeus), проведённых в Польше, показана существенная изменчивость мозга. При средней массе мозга 15,3 г были найдены особи с мозгом массой 12 и 17 г. Известны вариации в массе мозга у приматов, хищных, копытных и сумчатых; они обычно не превышают 20-24%. Сходная изменчивость обнаружена и в массе мозга птиц, которые обитают в Европе и Америке (Lefebvre ef al., 1997).

    1   2   3   4   5   6   7   8   9


    написать администратору сайта