Главная страница
Навигация по странице:

  • 28. Трубчатые печи. Назначение, их место и роль в технологической системе и область применения. Классификация трубчатых печей и их типы.

  • Рассмотрим классификацию трубчатых печей.

  • ТЕХНОЛОГИЧЕСКИЕ ПРИЗНАКИ

  • ТЕПЛОТЕХНИЧЕСКИЕ ПРИЗНАКИ

  • РАДИАЦИОННО-КОНВЕКТИВНЫЕ ПЕЧИ

  • По конструктивному оформлению трубчатые печи классифицируются: — по форме каркаса

  • — по способу сжигания топлива

  • Производительность печи

  • Полезная тепловая нагрузка

  • Коэффициент полезного действия

  • Расшифровка маркировки, область применения (агрессивное воздействие среды, давление, температура)


    Скачать 7.79 Mb.
    НазваниеРасшифровка маркировки, область применения (агрессивное воздействие среды, давление, температура)
    Анкорotvety_Gos_moi.docx
    Дата25.04.2017
    Размер7.79 Mb.
    Формат файлаdocx
    Имя файлаotvety_Gos_moi.docx
    ТипРасшифровка
    #4905
    страница11 из 25
    1   ...   7   8   9   10   11   12   13   14   ...   25

    27. Вакуумные колонны. Особенности конструкции и эксплуатации. Вакуумсоздающие системы, конструкции.

    В вакуумных колоннах давление ниже атмосферного (создано разрежение), что позволяет снизить рабочую температуру процесса и избежать разложения продукта (разделение мазута, производство стирола, синтетических жирных кислот и др.). Величина остаточного давления в колонне определяется физико-химическими свойствами разделяемых продуктов и главным образом допустимой максимальной температурой их нагрева без заметного разложения.

    Вакуумные колонны для перегонки мазута работают под наружным избыточным давлением около 0,093 МПа (700 мм рт. ст.) и отличаются сравнительно большим диаметром корпуса.

    Корпус вакуумной колонны укреплен снаружи кольцами жесткости, имеющими обычно в колоннах большого диаметра двутавровое сечение. Кольца жесткости устанавливают снаружи аппарата, так как в этом случае они не мешают внутренним устройствам и не подвергаются коррозионному воздействию среды. Расстояние между кольцами жесткости принимают обычно от 1,5 до 2,5 м с таким расчетом, чтобы они не мешали установке люков и штуцеров. Диаметр нижней частикорпуса вакуумных колонн обычно меньше. С одной стороны, это обеспечивает меньшее время пребывания гудрона в нижней части колонны и уменьшает вероятность его термического разложения. С другой стороны, объем паров в нижней части колонны меньше, чем в верхней части, поэтому нет необходимости выполнять нижнюю часть колонны большего диаметра.

    При изготовлении вакуумных аппаратов большого диаметра должны быть обеспечены минимальные отклонения от правильной формы, так как они ведут к перенапряжениям в стенке аппарата и снижению запаса устойчивости формы корпуса. Над вводом сырья и в верхней части вакуумных колонн устанавливают отбойные устройства, обеспечивающие достаточно

    эффективное отделение капель от паров при высокой скорости последних.

    Вакуумсоздающие системы

    На установках АВТ для создания вакуума в колонных аппаратах используются пароэжекторные вакуум-насосы различных модификаций.Термин «вакуум-насосы» сохранился чисто исторически, речь идет нео насосах, а о компрессорах определенного назначения. Пароэжекторные насосы широко внедрены во многих областях техники. Основнойпричиной столь широкого применения пароэжекторных вакуумныхнасосов является сравнительная простота их конструкции и эксплуатации, связанная с отсутствием движущихся частей, долговечнтью,небольшой стоимостью и простотой ремонта. Недостатком пароэжекторных вакуум-насосов, по сравнению с механическими насосами, является низкий коэффициент полезного действия, связанный с большимрасходом пара.В практике фракционирования вакуумной перегонки остатков наметилась тенденция к использованию вместо традиционных пароэжекторных вакуумных систем гидроциркуляционных. Последние болеесложные, что обусловлено включением в их схему системы транзитапарогазового потока из контура циркуляции рабочего тела. Однакоусложнение вакуумсоздающей системы и увеличение в связи с этимкапитальных затрат оправдано явными преимуществами ее эксплуатации.В качестве рабочего тела гидроциркуляционных вакуумных систем используется дизельное топливо, получаемое на самой установке. Отказ от использования в качестве рабочего тела водяного пара приводит к уменьшению сброса химически загрязненных вод. Другое важноепреимущество гидроциркуляционных вакуумных систем обусловленоразницей тарифов на водяной пар и электроэнергию.

    К материалам вакуумсоздающей системы на установках АВТ предъявляют следующие требования:

    — малое газовыделение;

    — химическая стойкость;

    — стабильность физических и технологических характеристик;

    — надежность;

    малое гидравлическое сопротивление;

    — герметичность;— износостойкость.

    28. Трубчатые печи. Назначение, их место и роль в технологической системе и область применения. Классификация трубчатых печей и их типы.

    Трубчатая печь — высокотемпературное термотехнологическое устройство с рабочей камерой, огражденной от окружающей атмосферы. Печь предназначена для нагрева углеводородного сырья теплоносителем, а также для нагрева и осуществления химических реакций за счет тепла выделенного при сжигании топлива непосредственно в этом аппарате. Трубчатые печи используются при необходимости нагрева среды (углеводородов) до температур более высоких, чем те, которых можно достичь с помощью пара, т. е. примерно свыше 230 °С. Несмотря на сравнительно большие первоначальные затраты, стоимость тепла, отданного среде при правильно спроектированной печи, дешевле, чем при всех других способах нагрева до высоких температур. В качестве топлива могут применяться продукты отходов различных процессов,в результате чего не только используется тепло, получаемое при ихсжигании, но часто устраняются и затруднения, связанные с обезвреживанием этих отходов.Трубчатые печи получили широкое распространение в нефтехимической промышленности, где их используют для высокотемпературного нагрева и реакционных превращений жидких и газообразных нефтепродуктов (пиролиза, крекинга). Нашли они применение и в химической промышленности. Трубчатая печь относится к аппаратам непрерывного действия с наружным огневым обогревом. Впервые трубчатые печи предложены русскими инженерами В. Г. Шуховым и С. П. Гавриловым. Сначала печи использовались на промыслах для деэмульгирования нефтей.

    Современная печь представляет собой синхронно работающий печной комплекс, т. е. упорядоченную совокупность, состоящую из непосредственно печи, средств обеспечения печного процесса, а также систем автоматизированного регулирования и управления печным процессом и средствами его обеспечеия. Несмотря на большое многообразие типов и конструкций трубчатых печей, общими и основными элементами для них являются рабочая камера (радиация, конвекция), трубчатый змеевик, огнеупорная футеровка, оборудование u1076 для сжигания топлива (горелки), дымоход, дымовая труба (рис. 2.70).

    Печь работает следующим образом. Мазут или газ сжигается с помощью горелок, расположенных на стенах или поду камеры радиации. Газы сгорания из камеры радиации поступают в камеру конвекции, направляются в дымоход и по дымовой трубе уходят в атмосферу. Продукт одним или несколькими потоками поступает в трубы конвективного змеевика, проходит трубы экранов камеры радиации и нагретый до необходимой температуры, выходит из печи. Тепловое воздействие на исходные материалы в рабочей камерепечи, является одним из основных технологических приемов, ведущихк получению заданных целевых продуктов. Главной частью трубчатой печи является радиационная секция, которая одновременно является и камерой сгорания. Передача тепла в радиационной секции осуществляется преимущественно излучением, вследствие высоких температур газов в этойчасти печи. Тепло, переданное в этой секции конвекцией, является только небольшой частью от общего количества переданного тепла, т. к. скорость газов, движущихся вокруг труб, большей частью определяется только местной разностью удельных весов газов, и передача тепла естественной конвекцией незначительна.

    Продукты сгорания топлива являются первичным и главным источником тепла, поглощаемого в радиационной секции трубчатых печей. Тепло, выделившееся при горении, поглощается трубами радиационной секции, создающими так называемую поглощающую поверхность. Поверхность футеровки радиационной секции создает так называемую отражающую поверхность, которая(теоретически) не поглощает тепла, переданного ей газовой средой печи,а только излучением передает егона трубчатый змеевик, (рис. 2.71)60…80 % всего используемого тепла в печи передается в камере радиации, остальное — в конвективнойсекции. Температура газов, выходящих из радиационной секции, обычно достаточно высока, и тепло этих газов можно использовать далеев конвективной части печи. Камера конвекции служит u1076 для использования физического тепла продуктов сгорания, выходящих из радиационной секции обычнос температурой 700…900 °С. В камере конвекции тепло к сырью передается в основном конвекцией и частично излучением трехатомныхкомпонентов дымовых газов.Величина конвективной секции, как правило, подбирается с такимрасчетом, чтобы температура продуктов сгорания, выходящих в боров,была почти на 150 °С выше, чем температура нагреваемых веществ привходе в печь. Поэтому тепловая нагрузка труб в конвективной секциименьше, чем в радиационной, что обусловлено низким коэффициентомтеплоотдачи со стороны дымовых газов. С внешней стороны иногдаэти трубы снабжаются добавочной поверхностью – поперечными илипродольными ребрами, шипами и т. п.Нагреваемое углеводородное сырье проходит последовательно сначала по змеевикам камеры конвекции, а затем направляется в змеевики камеры радиации. При таком противоточном движении сырья и продуктов сгорания топлива наиболее полно используется тепло, полученное при его сжигании.

    Рассмотрим классификацию трубчатых печей.

    Классификация печей — это упорядоченное разделение их в логической последовательности и соподчинении на основе признаков содержания на классы, виды, типы и фиксирование закономерных связеймежду ними с целью определения точного места в классификационнойсистеме, которое указывает на их свойства.Она служит средством кодирования, хранения и поиска информации, содержащейся в ней, дает возможность распространенения обобщенного опыта, полученного теорией и промышленной практикойэксплуатации печей, в виде готовых блоков, комплексных типовыхрешений и рекомендаций для разработки оптимальных конструкций печей и условий осуществления в них термотехнологических и теплотехнических процессов.

    Главными и естественными по степени существенности основаниями для классификации печей в логической последовательности являются следующие признаки :

    — технологические;

    — теплотехнические;

    — конструктивные.

    ТЕХНОЛОГИЧЕСКИЕ ПРИЗНАКИ

    По технологическому назначению различают печи нагревательныеи реакционно-нагревательные.

    В первом случае целью является нагрев сырья до заданной температуры. Это большая группа печей, применяемых в качестве нагревателейсырья, характеризуется высокой производительностью и умеренными температурами нагрева (300…500 °С) углеводородных сред (установкиАТ, АВТ, ГФУ).Во втором случае кроме нагрева в определенных участках трубногозмеевика обеспечиваются условия для протекания направленной реакции.Эта группа печей многих нефтехимических производств одновременно с нагревом и перегревом сырья используется в качестве реакторов. Их рабочие условия отличаются параметрами высокотемпературного процесса деструкции углеводородного сырья и невысокоймассовой скоростью (установки пиролиза, конверсии углеводородныхгазов и др.).

    ТЕПЛОТЕХНИЧЕСКИЕ ПРИЗНАКИ

    По способу передачи тепла нагреваемому продукту печи подразделяются:

    — на конвективные;

    — радиационные;

    — радиационно-конвективные.

    КОНВЕКТИВНЫЕ ПЕЧИ

    Конвективные печи — это один из старейших типов печей. Они являются как бы переходными от нефтеперегонных установок к печамрадиационно-конвективного типа.Практически в настоящее время эти печи не применяются, так как посравнению с печами радиационными или радиационно-конвективнымиони требуют больше затрат как на их строительство, так и во времяэксплуатации. Исключение составляют только специальные случаи,когда необходимо нагревать чувствительные к температуре веществасравнительно холодными дымовыми газами.Печь состоит из двух основных частей — камеры сгорания и трубчатого пространства, которые отделены друг от друга стеной, так чтотрубы не подвергаются прямому воздействию пламени и большая частьтепла передается нагреваемому веществу путем конвекции.Чтобы предотвратить прожог первых рядов труб, куда поступаютсильно нагретые дымовые газы из камеры сгорания, и чтобы коэффициент теплоотдачи удерживался в пределах, приемлемых u1087 по технико-экономическим соображениям, при сжигании используется значительныйизбыток воздуха или 1,5…4-кратнаярециркуляция остывших дымовыхгазов, отводимых из трубчатого

    пространства и нагнетаемых воздуходувкой снова в камеру сгорания.Одна из конструкций конвективной печи показана на рис. 2.72.Дымовые газы проходят черезтрубчатое пространство сверхувниз. По мере падения температурыгазов соответственно равномерноуменьшается поперечное сечениетрубчатого пространства, при этомсохраняется постоянная объемнаяскорость продуктов сгорания.

    РАДИАЦИОННЫЕ ПЕЧИ

    В радиационной печи все трубы, через которые проходит нагреваемое вещество, помещены на стенах камеры сгорания. Поэтому у радиационных печей камера сгорания значительно больше, чем у конвективных.Все трубы подвергаются прямому воздействию газообразной среды,которая имеет высокую температуру. Этим достигается:а) уменьшение общей площади теплоотдачи печи, так как количествотепла, отданного единице площади труб, путем радиации при одинаковой температуре среды (особенно при высоких температурах этой

    среды), значительно больше, чем количество тепла, которое можнопередать путем конвекции;

    б) хорошая сохранность футеровки за трубчатыми змеевиками, благодаря тому что снижается ее температура, во-первых, за счет прямогозакрытия части ее трубами, во-вторых, за счет отдачи тепла излучением футеровкой более холодным трубам.Обычно нецелесообразно закрывать все стены и свод трубами, таккак этим ограничивается теплоизлучение открытых поверхностей,а в результате уменьшается общее количество тепла, отдаваемого единицей площади труб.Например, у современных типов кубовых печей отношение эффективной открытой поверхности к общей внутренней поверхности печиколеблется в пределах 0,2…0,5.Чисто радиационные печи из-за простоты конструкции и большойтепловой нагрузки труб имеют самые низкие капитальные u1079 затраты наединицу переданного тепла. Однако они не дают возможности использовать тепло продуктов сгорания, как это имеет место y радиационноконвективньгх печей. Поэтому радиационные печи работают с меньшей

    тепловой эффективностью.Радиационные печи применяются при нагреве веществ до низкихтемператур (приблизительно до 300 °С), при небольшом их количестве,при необходимости использования малоценных дешевых топлив и в техслучаях, когда особое значение придается низким затратам на сооружение печи.

    РАДИАЦИОННО-КОНВЕКТИВНЫЕ ПЕЧИ

    Радиационно-конвективная печь (рис. 2.73) имеет две отделенныедруг от друга секции: радиационную и конвективную.Большая часть используемого тепла передается в радиационнойсекции (обычно 60…80 % всего использованного тепла), остальное –в конвективной секции.Конвективная секция служит для использования физического тепла продуктов сгорания, выходящих из радиационной секции обычнос температурой 700…900 °С, при экономически приемлемой температуре нагрева 350…500 °С (соответственно температуре перегонки).

    Величина конвективной секции, как правило, подбирается с такимрасчетом, чтобы температура продуктов сгорания, выходящих в боров,была почти на 150 °С выше, чем температура нагреваемых веществ привходе в печь. Поэтому тепловая нагрузка труб в конвективной секциименьше, чем в радиационной, что обусловлено низким коэффициентомтеплоотдачи со стороны дымовых газов.С внешней стороны иногда эти трубы снабжаются добавочной поверхностью – поперечными или продольными ребрами, шипами и т. п.Почти все печи, эксплуатируемые в настоящее время на нефтеперерабатывающих заводах, являются радиационно-конвекционными.В печах такого типа трубные змеевики размещены и в конвекционнойи в радиантной камерах.

    По конструктивному оформлению трубчатые печи классифицируются:

    по форме каркаса:

    а) коробчатые ширококамерные, узкокамерные б) цилиндрически;в) кольцевые;г) секционные;

    по числу камер радиации:а) однокамерные;б) двухкамерные;в) многокамерные;

    по расположению трубного змеевика:а) горизонтальное;б) вертикальное;

    по расположению горелок:а) боковое;б) подовое;

    по топливной системе:

    а) на жидком топливе (Ж);б) на газообразном топливе (Г);в) на жидком и газообразном топливе (Ж+Г);— по способу сжигания топлива:

    а) факельное;б) беспламенное сжигание;

    по расположению дымовой трубы:а) вне трубчатой печи;б) над камерой конвекции;

    по направлению движения дымовых газов:

    а) с восходящим потоком газов;б) с нисходящим потоком газов; в) с вертикальным потоком газов; г) с горизонтальным потоком газов.

    29. Показатели работы печей. Технологические параметры, определяющие габаритные размеры печей. Конструктивные элементы трубчатых печей: металлический каркас, фундамент, огнеупорная футеровка, теплоизоляция, гарнитура, дымовая труба. Материальное исполнение.

    Каждая трубчатая печь характеризуется тремя основными показателями:

    — производительностью,

    — полезной тепловой нагрузкой,

    — коэффициентом полезного действия.

    Производительность печи выражается количеством сырья, нагреваемого в трубных змеевиках в единицу времени (обычно в т/сутки).Она определяет пропускную способность печи, т. е. количество нагреваемого сырья, которое прокачивается через змеевики при установленных параметрах работы (температуре сырья на входе в печь и навыходе из нее, свойствах сырья и т. д.).Таким образом, для каждой печи производительность является наиболее полной ее характеристикой.

    Полезная тепловая нагрузка — это количество тепла, переданногов печи сырью (МВт, Гкал/ч). Она зависит от тепловой мощности и размеров печи. Тепловая нагрузка большинства эксплуатируемых печей8…16 МВт.

    Перспективными являются более мощные печи с тепловой нагрузкой 40…100 МВт и более.

    Коэффициент полезного действия печи характеризует экономичность ее эксплуатации и выражается отношением количества полезноиспользуемого тепла Qпол к общему количеству тепла Qобщ, которое выделяется при полном сгорании топлива.Полезно использованным считается тепло, воспринятое всеми нагреваемыми продуктами (потоками): сырьем, перегреваемым в печипаром и в некоторых случаях воздухом, нагреваемым в рекуператорах(воздухоподогревателях).Значение коэффициента полезного действия зависит от полноты сго-

    рания топлива, а также от потерь тепла через обмуровку печи и с уходящими в дымовую трубу газами.

    Трубчатые печи, эксплуатируемые в настоящее время на нефтеперерабатывающих заводах, имеют КПД в пределах 0,65…0,87.Повышение коэффициента полезного действия печи за счет болееполного использования тепла дымовых газов возможно до значения,определяемого их минимальной температурой. Как правило, темпе-

    ратура дымовых газов, покидающих конвекционную камеру, должнабыть выше начальной температуры нагреваемого сырья не менее чемна 120…180 °С.

    Эксплуатационные свойства каждой печи наряду с перечисленнымипоказателями характеризуются:

    — теплонапряженностью поверхности нагрева;

    — тепловым напряжением топочного объема;

    — гидравлическим режимом в трубном змеевике при установившейся работе

    От комплекса этих показателей зависят эффективность работы трубчатых печей и срок их службы.
    1   ...   7   8   9   10   11   12   13   14   ...   25


    написать администратору сайта