Надежность и ТД. Надежность. Регламентированы гост 27. 00289 Надежность в технике. Термины и определения
Скачать 1.7 Mb.
|
НАДЕЖНОСТЬ СИСТЕМЫ С НЕНАГРУЖЕННЫМ РЕЗЕРВИРОВАНИЕМОбщий анализ надежности приведен для системы, состоящей из одного основного (рабочего) и (n - 1) резервных элементов. Допущения: 1. Время замены отказавшего элемента резервным равно 0 (t3 0). 2. Переключающее устройство подключения резервного элемента вместо отказавшего основного – абсолютно надежно. При ненагруженном резервировании резервный элемент не может отказать, находясь в отключенном состоянии, и его показатели надежности не изменяются. Исходные данные для расчета надежности: вероятность безотказной работы (ВБР) i-го элемента Pi(t). интенсивность отказов (ИО) i-го элемента i(t). математическое ожидание (МО) наработки до отказа i-го элемента T0i. Анализ случайной наработки до отказа системы с ненагруженным резервом (рис. 1): Рис. 1 МО наработки до отказа системы: где T0i = M(Ti ) – МО наработки до отказа i-го элемента системы. Рассмотрим систему, состоящую из основного элемента (ОЭ) и одного резервного (РЭ). ОЭ и РЭ являются невосстанавливаемыми объектами. Рис. 2 События, соответствующие работоспособности системы за наработку (0, t): A = {безотказная работа (БР) системы за наработку (0, t)}; A1 = {БР ОЭ за наработку (0, t)}; A2 = {отказ ОЭ в момент t > , включение (t3 = 0) РЭ и БР РЭ на интервале (t – )}. Событие A = A1 A2, поэтому ВБР системы к наработке t (за наработку (0, t)), определяется: P(A) = P(A1 ) + P(A2 ) , где P(A) = Pс(t); P(A1 ) – ВБР ОЭ к наработке t, P(A1 ) = P1 (t); P(A2 ) = Pр (t) – вероятность отказа ОЭ и БР РЭ после отказа ОЭ. При известном законе распределения наработка до отказа ОЭ вычисление P1 (t) не представляет сложности. Событие A2 является «сложным» событием, включающим в себя простые: A21 = {отказ ОЭ при < t (вблизи рассматриваемого момента )}; A22 = {БР РЭ с момента до t, т. е. в интервале (t - )}. Событие A2 осуществляется при одновременном выполнении событий A21 и A22: A2 = A21 A22 . События A21 и A22 являются зависимыми, поэтому вероятность события A2 P(A2 ) = P(A21 ) · P(A22| A21 ) . Соответствующие вероятности: 1) P(A22| A21 ) = P2 (t - ) – ВБР РЭ в интервале (t - ), где P2 (t) – ВБР РЭ к наработке t. 2) для определения P(A21 ) рассмотрен малый интервал ( , + d ), для которого вероятность отказа ОЭ равна: f1( ) d Для получения ВО ОЭ к моменту интегрируем полученное выражение по от 0 до t. Поскольку ВО, как функция распределения случайной наработки до отказа, равна то где Вероятность события A2: Тогда ВБР рассмотренной системы с ненагруженным резервом равна:
Аналогично, для системы с одним ОЭ и (n -1) РЭ, получается рекуррентное выражение:
где индекс (n - 1) означает, что соответствующие характеристики (ВБР и ПРО) относятся к системе, в которой включается в работу последний n-й элемент. Выражение (2) приведено для состояния, когда к моменту отказал предпоследний (n -1) элемент системы и остался лишь один (последний) работоспособный элемент. Принимая для рассмотриваемой системы, что наработки до отказа ОЭ и РЭ подчиняются экспоненциальному распределению с параметрами 1 и 2:
выражение (1) после интегрирования имеет вид:
Плотность распределения наработки до отказа системы, равна:
При кратностях резервирования k > 5 распределение наработки до отказа системы с ненагруженным резервом становится близким к нормальному независимо от законов распределения наработки, составляющих систему элементов. При идентичных ОЭ и (n -1) РЭ и экспоненциальном распределении наработки элементов для ВБР системы с ненагруженным резервом и целой кратностью резервирования k = (n - m)/m, где m = 1:
где n – число элементов системы; k = (n - 1)/1 = (n - 1) – кратность резервирования, при m = 1 . ВО системы:
ПРО системы: ИО системы: Таким образом, распределение наработки до отказа таких систем подчиняется распределению Эрланга (гамма-распределение при целых n). Согласно, выражению (5) проанализируем, как изменяется ВБР системы при различной кратности резервирования: Сравнение ненагруженного и нагруженного резервирований проведено по графику Pс( t) для системы с идентичными элементами ( ) и кратностью резервирования k = 2. Наибольшая эффективность от использования системы с ненагруженным резервом будет при продолжительности работы РЭ не менее 1.5 T0. При ненагруженном резерве с дробной кратностью (при m > 1) и экспоненциальном распределении наработки до отказа идентичных элементов (ИО ) расчетное выражение для Pс(t): где k* = n – m. Ниже рассмотрены показатели безотказности системы с ненагруженным резервированием, когда случайная наработка до отказа элементов системы подчиняется нормальному распределению с ПРО где - число элементов системы. Поскольку случайная наработка до отказа системы а Ti являются независимыми случайными величинами наработки, то сумма (композиция) независимых случайных величин, каждая из которых распределена нормально, также имеет нормальное распределение с параметрами: - математическое ожидание наработки до отказа - дисперсия наработки до отказа Среднее квадратичное отклонение наработки до отказа системы, определяется: Плотность распределения случайной наработки до отказа системы при целой кратности резервирования Показатели безотказности определяются с использованием функций f(x) и (x) для и имеют вид: Pс(t) = 0,5 - (x) ; Qс(t) = 0,5 + (x) . Для системы с элементами наработка на отказ которых подчиняется экспоненциальному распределению Pi (t) = exp(- i t), можно принять Pi(t) 1 - i t, поэтому выражения ВО и ВБР: При ненагруженном резерве ВО системы в n! раз меньше, чем при нагруженном. Контрольные вопросы: Что представляет собой ненагруженное резервирование и как случайная наработка до отказа системы связана со случайными наработками составляющих систему элементов? Основные допущения, принятые при расчете системы с ненагруженным резервированием? К какому закону распределения стремится наработка до отказа системы при больших значениях кратности резервирования? Проанализируйте, как изменяется вероятность безотказной работы системы с увеличением кратности резервирования? При каких условиях ненагруженное резервирование становится значительно эффективнее нагруженного? Какой закон распределения наработки до отказа будет у системы с ненагруженным резервированием, если законы распределения наработки до отказа элементов являются нормальными? Приведите расчетные формулы показателей безотказности для системы с нормальным распределением наработки элементов? Лекция 12 |