Главная страница

Надежность и ТД. Надежность. Регламентированы гост 27. 00289 Надежность в технике. Термины и определения


Скачать 1.7 Mb.
НазваниеРегламентированы гост 27. 00289 Надежность в технике. Термины и определения
АнкорНадежность и ТД
Дата25.05.2022
Размер1.7 Mb.
Формат файлаdoc
Имя файлаНадежность.doc
ТипРегламент
#548236
страница10 из 17
1   ...   6   7   8   9   10   11   12   13   ...   17

НАДЕЖНОСТЬ СИСТЕМ С НАГРУЖЕННЫМ РЕЗЕРВИРОВАНИЕМ


Рассматривается система, состоящая из одного основного и (n - 1) резервных элементов.

При условии, что отказы элементов независимы, отказ системы происходит только при отказе всех n элементов.

 

Структура системы

 

 

Случайная наработка до отказа:

 

 

(система работоспособна до тех пор, пока работоспособен хотя бы один элемент).

Поскольку отказ системы есть событие, которое заключается в одновременном появлении событий – отказах всех элементов, то

  • вероятность отказа (ВО):



 

  • вероятность безотказной работы (ВБР):



 

  • математическое ожидание (МО) наработки до отказа:



 

При идентичных элементах системы, т. е. P1(t) = … = Pn(t)

 

  • ВБР:



 

  • ВО:



 

  • МО наработки до отказа:



 

Для системы с экспоненциальной наработкой до отказа каждого из n элементов:

 

Pi(t) = exp(- i t),

 

где  i = const показатели безотказности:

 

 

Таким образом, при нагруженном резервировании экспоненциальное распределение наработки до отказа не сохраняется.

При идентичных n элементах системы МО наработки до отказа:

 

 

При большом n (n ), T0с 1/ ·( ln n + c), где c = 0.577….

При  неидентичных элементах:

 

Для системы с n идентичными элементами P1(t) = … = Pn(t) решаются задачи оптимизации (в различных постановках).

1. Определение числа n элементов системы, при котором вероятность отказа (ВО) системы Qс(t) не будет превосходить заданной Qс.

Поскольку Qс(t) = Qin(t), то условие задачи

 

Qin(t) Qс(t).

 

Из приведенного неравенства определяется минимально необходимое число элементов:

 

 

2. Определение надежности n элементов системы из условия, чтобы ВО не превышала заданную .

Из условия Qin(t) Qс(t), находим ВО I и ВБР Pi(t) 1 - Qi(t).

 

Надежность систем с ограничением по нагрузке

 

Для некоторых систем условия работы таковы, что для работоспособности системы необходимо, чтобы по меньшей мере r элементов из n были работоспособны.

Т. е. число необходимых рабочих элементов – r, резервных – (n - r).

Отказ системы наступает при условии отказа (n – r + 1) элементов.

Если при изменении числа находящихся в работе элементов не наблюдается перегрузки, влияющей на возможность возникновения отказа, то отказы можно считать независимыми.

ВБР такой системы определяется с помощью биномиального распределения.

Для системы, сохраняющей работоспособность при функционировании r из n элементов, ВБР определяется как сумма r, (r + 1), … , (n – r) элементов:

 

 

где

Для идентичных элементов с экспоненциальной наработкой Pi(t) = exp(- i t),      i = const ( 1 = … = i = … = n) ВБР:

 

 

Зависимость надежности системы от кратности резервирования

 

При целой кратности k (r = 1, n = k + 1) для системы с идентичными элементами и экспоненциальной наработкой до отказа:

  • ВБР системы:

                                              

Pс(t) = 1 – (1 - exp(- t))k+1;

 

  • ПРО системы:

 

fс(t) =  - dPс(t)/ dt = (k + 1) (1 - exp(- t))k exp(- t);

 

  • ИО системы:



 

Полагая элементы системы высоконадежными, т. е. t << 1 (P(t) 1 - t), получены упрощенные выражения:

 

  • ВБР системы:

Pс(t) 1 – ( t))k+1;

  • ПРО системы:

fс(t) (k + 1) k+1 tk;

  • ИО системы:



 

но поскольку t << 1, то ( t)k+1 0, поэтому ИО системы:

 

с (t)  (k + 1) k+1 tk = n · n · tn-1,

 

где n = k + 1.

Полученное выражение с (t) свидетельствует о том, что при = const элементов, ИО системы зависит от наработки, т. е. распределение наработки до отказа системы не подчиняется экспоненциальному распределению.

На рис. 1 приведены зависимости изменения Pс( t) и с / ( t) из которых следует, что:

 

  • увеличение кратности резервирования k повышает надежность (Pс возрастает, с / 0);

  • резервирование наиболее эффективно на начальном участке работы системы (при t T0), т. е.



 

Рис. 1

 

Из графика с / ( t) видно, что при t = (3 4)T0 = (3 4) 1/ , сприближается к .

Поскольку средняя наработка до отказа системы при идентичных элементах      ( = const): 

 

 

то выигрыш в средней наработке T0с снижается по мере увеличения кратности резервирования.

Например,

при k = 1

 

T0с = T0 ·(1 + 1/2) = 3/2T0

    (увеличение T0с на 50%);

 

при k = 2 

 

T0с= T0 ·(1 + 1/2 + 1/3) = 11/6T0

(увеличение T0с на 83%);

 

при k = 3

       

T0с= 25/12T0

(увеличение T0сна 108%).

 

Таким образом, динамика роста T0ссоставляет: 50, 33 и 25%, т. е. уменьшается.

 

 

Контрольные вопросы:

  1. Чем отличаются системы с нагруженным резервированием с целой и дробной кратностью? Привести расчетные выражения показателей безотказности?

  2. Какой закон распределения наработки до отказа будет у системы с нагруженным резервированием, если законы распределения наработки до отказа составляющих ее элементов – экспоненциальные?

  3. Какие задачи оптимизации решаются и в чем они состоят для систем с нагруженным резервом?

  4. Как определяется вероятность безотказной работы системы с нагруженным резервированием и дробной кратностью?

  5. При каких условиях наиболее эффективно применение нагруженного резервирования?

Лекция 11
1   ...   6   7   8   9   10   11   12   13   ...   17


написать администратору сайта