Надежность и ТД. Надежность. Регламентированы гост 27. 00289 Надежность в технике. Термины и определения
Скачать 1.7 Mb.
|
НАДЕЖНОСТЬ СИСТЕМ С ОБЛЕГЧЕННЫМ И СО СКОЛЬЗЯЩИМ РЕЗЕРВОМ1. Надежность систем с облегченным резервом Как отмечалось в предыдущих лекциях, ненагруженный резерв более эффективен, чем нагруженный, и количественно показатели эффективности зависят от законов распределения наработки до отказа отдельных элементов резервированной системы. Основным моментом, который может сказаться на оценке надежности является то, что предположение = const является довольно условным, поскольку, особенно при отсутствии технического обслуживания, очередной работающий элемент эксплуатируется до полного износа (физически должна возрастать). Поэтому принятое экспоненциальное распределение наработки элементов, переходящих из резервных в рабочие, использовалось только с целью упрощения расчетов. Ненагруженный резерв в рамках принятых допущений не всегда осуществим. Например, в авиа- и судовых системах как основные, так и резервные элементы подвержены вибрации, ударам, повторно-статическим нагрузкам, перепадам температур и т. п. Поэтому не включенные в работу резервные элементы будут иметь некоторую 0, то есть они также изнашиваются, но менее интенсивно. Поэтому, в ряде практических случаев, уместно применять облегченный резерв: ( подключение резервных элементов (РЭ) к цепям питания для прогрева и удержания требуемых значений параметров; ( внешние нагрузки и воздействия, приводящие к изменению свойств материалов, рабочих параметров и т. п. При этом, РЭ будут иметь некоторую интенсивность отказов р 0 . Рассмотрим систему, состоящую из равнонадежных основного (ОЭ) и резервного (РЭ) элементов. Элементы невосстанавливаемые. События, обеспечивающие безотказную работу (БР) системы за наработку (0, t ): A = {БР системы за наработку (0, t )}; A1 = {БР ОЭ за наработку (0, t )}; A2 = {отказ ОЭ в момент < t, включение РЭ и БР его на интервале (t - )}. Событие A представляет сумму событий A1 и A2 A = A1 A2 ВБР системы за наработку (0, t ), т.е. к наработке t равна сумме вероятностей событий A1 и A2: P(A) = P( A1 ) + P( A2 ) , где P(A) = Pс( t ) – ВБР системы к наработке t; P(A) = P0 ( t ) – ВБР ОЭ к наработке t (за интервал (0, t )); P(A) = Pр ( t ) – ВБР РЭ к наработке t, при условии, что ОЭ отказал. При известном законе распределения наработки ОЭ вычисление P0 ( t ) не составляет труда, подробнее рассмотрено определение Pр ( t ). Для этого событие A2раскладывается на составляющие: A21 = {отказ ОЭ при наработке < t}; A22 = {БР РЭ до наработки – момент включения его в работу}; A23 = {БР РЭ от до t, т.е. за интервал (t - )}. Очевидно, событие A2 выполнится при одновременном выполнении всех событий: A2 = A21 A22 A23 ; События A21, A22, A23 являются зависимыми, но поскольку они представляют ВБР или ВО элементов, наработки до отказа которых описываются своими законами распределения, то вероятность события A2 равна произведению вероятностей событий: P( A2 ) = P( A21 ) · P( A22 ) · P( A23 ) . Соответствующие вероятности определяются: Выделяется бесконечно малый интервал [ , + d ] и определяется вероятность отказа ОЭ в интервале [ , + d ]: f0 ( ) = - dP0 ( ) / d – ПРО ОЭ. ВБР РЭ до момента отказа ОЭ Pр ( ) = P( A22 ) ВБР РЭ от момента включения в работу до t Pр (t - ) = P( A23 ) . Тогда ВБР ОЭ в течение наработки [ , + d ] при условии, что ОЭ отказал, равна: Pр ( ) · Pр (t - ) · f0 ( ) d . Полученное выражение не равно P( A2 ), поскольку выражает ВБР за выделенный бесконечно малый интервал наработки вблизи . Поскольку < t, то из полученного выражения искомая вероятность Pр ( t ) = P( A2 ), получена интегрированием выражения по всем от 0 до t. Окончательно: Тогда ВБР резервируемой системы с облегченным резервом: Аналогично, ВБР системы, состоящей из n равнонадежных элементов: где индекс (n-1)с означает, что ВБР и ПРО относятся к системе, при отказе которой включается рассматриваемый n –й элемент. При экспоненциальном распределении наработки до отказа элементов составляющие расчетного выражения принимают вид:
где раб – ИО элементов в рабочем режиме; p – ИО элементов в режиме резерва. При наличии одного ОЭ и одного РЭ (n = 2), ВБР определяется: окончательно: Pс ( t ) = exp ( - раб · t )[1 + раб {1 - exp ( - pt )} / p] . Для системы из n элементов с экспоненциальной наработкой до отказа где Расчеты для систем с облегченным резервом имеют объективные трудности, поскольку очень трудно учесть как влияет нагрузка, внешние воздействия на характеристики надежности. Средняя наработка до отказа системы из n элементов: Для практических расчетов систем с облегченным резервированием в случае, если ОЭ имеет распределением наработки P0 ( t ) = exp ( - раб · t ) и идентичные резервные элементы (РЭ) Pр ( t ) = exp (- pt ) – для( n - 1 ) резервных элементов, ВБР системы может быть приближенно определена по выражению: где n – общее число элементов системы. Например, при n = 2 (k = 1, m = 1) при n = 3 (k = 2, m = 1) 2. Скользящее резервирование При скользящем резервировании резервный элемент может быть включен взамен любого из отказавших элементов основной системы. Структура скользящего резервирования: Основная система – n элементов. Резервная группа – m элементов. Обычно m < n, т. е. число резервных элементов (РЭ) меньше числа основных (ОЭ), поэтому скользящее резервирование считается активным с дробной кратностью. Отказ системы наступает в случае, когда число отказавших основных элементов превысит число резервных. Примером может служить организация линий связи, когда имеется одна резервная линия на несколько основных (в практике, трех). Рассмотрен случай определения ВБР системы с одним резервным элементом на n элементов основной системы. Допущение: РЭ и элементов основной системы равнонадежны и РЭ не может отказать до момента его включения в работу. Известны: Pi ( t ) = P ( t ); Pn ( t ); Pp ( t ). Получение расчетного выражения для ВБР системы аналогично тому, что было приведено для облегченного резерва: выделение возможных состояний системы, при которых она продолжает безотказно работать; вычисление вероятностей этих состояний. События, обеспечивающие безотказную работу (БР) системы в течение (0, t ): A = {БР системы за наработку (0, t )}; A1 = {БР всех элементов основной системы за наработку (0, t )}; A2 = {БР при условии, что отказал один элемент из при < t, переключающее устройство работоспособно – включение РЭ и БР его на интервале (t - )}. Событие A выполняется в результате выполнения одного из событий A1 или A2 A = A1 A2. Работа резервного элемента ВБР системы за наработку (0, t ) равна: P( A ) = P( A1 ) + P( A2 ) , где P( A ) = Pс( t ); P( A1 ) = P1 ( t ) = P0c ( t ) = Pn ( t ) – ВБР основной системы (ОС) к моменту t, где P1 ( t ) = … = Pn ( t ) = P ( t ) – ВБР каждого из элементов; P( A2 ) = P2 ( t ) – ВБР для события A2. Для определения вероятности P( A2 ), рассмотрим событие A2: A121 = {отказ одного (первого) из элементов ОС при < t}; A122 = {БР переключающего устройства (ПУ) до наработки – момента включения РЭ}; A123 = {БР РЭ после включения его в работу, т. е. на интервале (t - )}. Очевидно, что A12 = A121 A122 A123, поэтому P(A12) = P(A121) · P(A122) · P(A123) . Индекс 1 – отказ 1 элемента ОС. Соответствующие вероятности: 1. Выделяется бесконечно малый интервал [ , + d ] и определяется ВО ОЭ в интервале [ , + d ]: f( )d = - dP( ) / d . 2. ВБР ПУ до момента отказа одного из элементов ОС равна Pп( ); 3. ВБР РЭ с момента его включения, т. е. за интервал (t - ): Pр ( t - ). Тогда ВБР системы в течение наработки [ , + d ] при отказе первого элемента ОС, равна: f( ) d · Pп( ) · Pр( t - ) Интегрируя по всем от 0 до t, определяется ВБР системы при условии, что первый из элементов ОС отказал: Аналогичные рассуждения можно провести для каждого из n элементов ОС. После отказа одного из элементов, n –1 элементов должны остаться работоспособными. Поскольку событие A2, заключающееся в БР системы, подразумевает БР при отказе любого из n элементов ОС, то его можно рассматривать, как где . An – 1 – событие, заключающееся в БР оставшихся (n – 1) элементов ОС; Ai2 – БР системы при отказе i-го элемента (не только первого) ОС. где P(An – 1) = Pn – 1( t ) . Поэтому ВБР системы при отказе элемента ОС выражается: Тогда ВБР системы со скользящим резервом определяется: При экспоненциальном распределении наработки до отказа основных и резервных элементов P( t ) = exp ( - j t ), а также переключающего устройства (ПУ), ВБР системы: Pс(t ) = [ 1 + n · 0 / п (1 – exp ( - пt ))] exp ( - n 0t ), где 0 – ИО основного и резервного элементов; п – ИО переключающего устройства. Показатель эффективности резервирования: Bр = Pс(t ) / P0с(t ) = 1 + n · 0 / п (1 – exp ( - пt )) , где P0 с(t ) = exp ( - n 0 t ) – ВБР основной системы. При большем числе резервных элементов (m > 1) при определении Pс(t) рассматриваются четыре несовместных события (для m = 2), при которых возможна БР системы и т. п. Контрольные вопросы: Что в надежности представляет облегченный резерв и видом какого резервирования он является? Сформулируйте условие работоспособности системы с облегченным резервом? Приведите логическую цепь вывода выражения ВБР системы с облегченным резервом? Что представляет собой скользящее резервирование в надежности, и видом какого резервирования оно является? Сформулируйте условия работоспособности системы со скользящим резервированием и приведите логическую цепь вывода выражения ВБР системы? Лекция 13 |