|
Громов - СПЕЦИАЛЬНЫЕ РАЗДЕЛЫ ТЕОРИИ УПРАВЛЕНИЯ. Специальные разделы теории управления. Оптимальное управление
1.3. Необходимые условия оптимальности управления, достаточные условия оптимальности и проблема существования оптимального управления Рассмотренные в данном пособии необходимые условия оптимальности управления для различного типа задач оптими- зации получены на основе использования аналитических непрямых методов оптимизации и образуют совокупность функ- циональных соотношений, которым обязательно должно удовлетворять экстремальное решение. При выводе их сделано существенное для последующего применения предположение о существовании оптимального управления (оптимального решения). Другими словами, если оптимальное решение существует, то оно обязательно удовле- творяет приведенным (необходимым) условиям. Однако этим же необходимым условиям могут удовлетворять и другие ре- шения, не являющиеся оптимальными (подобно тому, как необходимому условию 0 = dx df для минимума функции одной переменной удовлетворяют, например, точки максимума и точки перегиба функции f (x)). Поэтому, если найденное решение удовлетворяет необходимым условиям оптимальности, то это еще не означает, что оно является оптимальным. Использование одних только необходимых условий дает возможность в принципе найти все решения, им удовлетво- ряющие, и отобрать затем среди них те, которые действительно являются оптимальными. Однако практически найти все ре- шения, удовлетворяющие необходимым условиям, чаще всего не представляется возможным в силу большой трудоемкости такого процесса. Поэтому после того, как найдено какое-либо решение, удовлетворяющее необходимым условиям, целесо- образно проверить, является ли оно действительно оптимальным в смысле исходной постановки задачи. Аналитические условия, выполнимость которых на полученном решении гарантирует его оптимальность, называются достаточными условиями. Формулировка этих условий и особенно их практическая (например, вычислительная) проверка часто оказывается весьма трудоемкой задачей. В общем случае применение необходимых условий оптимальности было бы более обоснованным, если бы для рассмат- риваемой задачи можно было установить факт существования или существования и единственности оптимального управле- ния. Этот вопрос является математически весьма сложным. Проблема существования, единственность оптимального управления состоит из двух вопросов. 1. Существование допустимого управления (т.е. управления, принадлежащего заданному классу функций), удовлетво- ряющего заданным ограничениям и переводящего систему из заданного начального состояния в заданное конечное состоя- ние. Иногда граничные условия задачи выбраны так, что система – в силу ограниченности ее энергетических (финансовых, информационных) ресурсов – не в состоянии их удовлетворить. В этом случае не существует решения задачи оптимизации. 2. Существование в классе допустимых управлений оптимального управления и его единственность. Эти вопросы в случае нелинейных систем общего вида не решены еще с достаточной для приложений полнотой. Про- блема осложняется также тем обстоятельством, что из единственности оптимального управления не следует единственность управления, удовлетворяющего необходимым условиям. К тому же, обычно удовлетворяется какое-либо одно, наиболее важное необходимое условие (чаще всего – принцип максимума). Проверка дальнейших необходимых условий бывает достаточно громоздкой. Это показывает важность любой инфор- мации о единственности управлений, удовлетворяющих необходимым условиям оптимальности, а также о конкретных свой- ствах таких управлений. Необходимо предостеречь от заключений о существовании оптимального управления на основании того факта, что ре- шается «физическая» задача. На самом деле, при применении методов теории ОП приходится иметь дело с математической моделью. Необходимым условием адекватности описания физического процесса ММ как раз и является существование ре- шения для математической модели. Поскольку при формировании математической модели вводятся различного рода упро- щения, влияние которых на существование решений трудно предсказать, доказательство существования является отдельной математической проблемой. Таким образом: • из существования ОУ вытекает существование, по крайней мере, одного управления, удовлетворяющего необходи- мым условиям оптимальности; из существования управления, удовлетворяющего необходимым условиям оптимальности, не вытекает существование оптимального управления; • из существования ОУ и единственности управления, удовлетворяющего необходимым условиям, вытекает единст- венность оптимального управления; из существования и единственности ОУ не следует единственность управления, удовле- творяющего необходимым условиям оптимальности. 1.4. Общая характеристика результатов, которые могут быть получены методами теории оптимального управления ТОП является основой единой методологии проектирования оптимальных движений, технических, экономических и информационных систем. В результате применения методов ТОП к задачам конструирования различных систем могут быть получены: 1) оптимальные по тому или иному критерию временные программы изменения управляющих воздействий и опти- мальные значения постоянных управляющих (проектных, настроечных) параметров с учетом различного рода ограничений на их значения; 2) оптимальные траектории, режимы с учетом ограничений на область их расположения; 3) оптимальные законы управления в форме обратной связи, определяющие структуру контура системы управления (решение задачи синтеза управления); 4) предельные значения ряда характеристик или иных критериев качества, которые затем можно использовать как эта- лон для сравнения с другими системами; 5) решение краевых задач попадания из одной точки фазового пространства в другую, в частности, задача попадания в заданную область; 6) оптимальные стратегии попадания в некоторую движущуюся область. 1.5. Условие рационального применения методов оптимизации Методы оптимизации управления рационально применить: 1) в сложных технико-экономических системах, где отыскание приемлемых решений на основе опыта затруднительно. Опыт показывает, что оптимизация малых подсистем может приводить к большим потерям в критерии качества объединен- ной системы. Лучше приближенно решить задачу оптимизации системы в целом (пусть в упрощенной постановке), чем точ- но для отдельной подсистемы; 2) в новых задачах, в которых отсутствует опыт формирования удовлетворительных характеристик процесса управле- ния. В таких случаях формулировка оптимальной задачи часто позволяет установить качественный характер управления; 3) на возможно ранней стадии проектирования, когда имеется большая свобода выбора. После определения большого количества проектных решений система становится недостаточно гибкой и последующая оптимизация может не дать суще- ственного выигрыша. При необходимости определить направление изменения управления и параметров, дающих наибольшее изменение кри- терия качества (определение градиента качества). Следует отметить, что для хорошо изученных и долго эксплуатируемых систем методы оптимизации могут давать не- большой выигрыш, так как найденные из опыта практические решения обычно приближаются к оптимальным. В некоторых практических задачах наблюдается определенная «грубость» оптимальных управлений и параметров, т.е. большим локальным изменением управлений и параметров отвечают малые изменения критерия качества. Это дает иногда повод к утверждению, что на практике всегда пологие и строгие методы оптимизации не нужны. На самом деле «грубость» управления наблюдается лишь в случаях, когда оптимальное управление соответствует ста- ционарной точке критерия качества. В этом случае изменение управления на величину ε приводит к отклонению критерия качества на величину ε 2 В случае управлений, лежащих по границе допустимой области, указанная грубость может и не иметь место. Это свой- ство должно исследоваться для каждой задачи специально. Кроме того, в некоторых задачах даже небольшие улучшения критерия качества, достигаемые за счет оптимизации, могут иметь существенное значение. Сложные задачи оптимизации управления часто предъявляют чрезмерные требования к характеристикам ЭВМ, исполь- зуемых при решении. Контрольные вопросы 1. Расскажите о роли теории оптимальных процессов при решении технических задач. 2. Дайте характеристику общей задачи управления. Какие математические модели и почему она должна включать? 3. Дайте характеристику прямым и косвенным методам теории оптимальных процессов. 4. Перечислите условия рациональности применения методов оптимизации. 5. Дайте общую характеристику результатам, которые могут быть получены вследствие применения методов теории оптимальных процессов. 6. Расскажите о необходимых и достаточных условиях в теории оптимальных процессов. 7. Расскажите о проблеме существования оптимальных управлений. Г л а в а 2 ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ МАТЕМАТИЧЕСКОЙ ТЕОРИИ ОПТИМАЛЬНЫХ ПРОЦЕССОВ УПРАВЛЕНИЯ 2.1. Математические модели. Переменные состояния (фазовые координаты) управляемого процесса ТОП управления имеет дело с ММ технических или экономических (ТЭ) задач оптимизации процесса управления фи- зическими системами. ММ есть достаточно полная сводка функциональных соотношений, описывающих основные свойства физических объектов, процессы их функционирования и управления в рамках выбранной степени приближения и детализа- ции и отражающая все существенные требования к конкретным техническим характеристикам системы.
Математическая модель ТЭ задачи оптимизации процесса управления состоит из ряда частных математических моде- лей, включая ММ управляемого процесса, математическая модель ТЭ ограничений на величины управляющих воздействий и на возможное расположение на траектории, математическое описание показателя эффективности (критерия качества) про- цесса управления и т.д. Основные элементы общей ММ ТЭ задачи оптимизации процесса управления приведены в табл. 1. Математическая задача оптимизации процесса управления считается полностью определенной (корректно поставлен- ной), если точно описаны все элементы ММ, представленные в табл. 1. В основе ММ ТЭ задачи ОПУ лежит ММ управляемого процесса. Эта модель основывается на понятии переменных со- стояния (фазовых координат), которые вводятся в задачу следующим образом. Пусть управляемая система S может быть идеализирована настолько, что в каждый фиксированный момент времени на- блюдения t t ′ = на интервале T t t t t t T ∈ ′ ≤ ≤ = }, , { 1 0 ее свойства могут быть описаны конечным множеством действитель- ных чисел ) ( ..., ), ( ), ( 2 1 t x t x t x n ′ ′ ′ , которые рассматриваются как компоненты некоторого вектора T n t x t x t x t )) ( ..., ), ( ), ( ( ) ( 2 1 ′ ′ ′ = ′ x При изменении момента времени наблюдения, вообще говоря, изменяется и вектор х. Это изменение может быть вы- звано приложенными к объекту воздействиями. Если и при t t ′ > свойства системы по-прежнему полностью описываются вектором T n t x t x )) ( , ), ( ( 1 K = x и если n – наименьшее количество величин ) (t x i ′ , с помощью которых оказывается возможным предсказать значение ( ) t x при всех t t ′ > по известным значениям ) (t x ′ и известным на Т значениям приложенных воздействий, то вектор x(t) называ- ется вектором состояния (детерминированной) системы S в момент t (или векторам фазовых координат). Величины i x называются компонентами вектора состояния, или фазовыми координатами. Множество всех возможных состояний T n t x t x )) ( , ), ( ( 1 K = x в различные моменты времени T t ∈ образуют n-мерное пространство состояний n n R X ⊂ ( n – мерное фазовое пространство), точка n X ∈ x является изображающей точкой этого пространства. 1. Этапы построения и элементы математической модели технической задачи оптимизации процесса управления для детерминированных систем с сосредоточенными параметрами и непрерывным временем Этап Содержание этапа Элементы ММ Примечания I Неформальное описание за- дачи и ее анализ; выбор и обоснование степени точно- сти и детализации описания системы физическими тео- риями. Физическая поста- новка задачи Формулировка рассмотренного случая или узкой задачи исследова- ния в содержательных терминах. Установление физических законов, которым подчиняются различные объекты задач Подготавливают данные, на основе которых в дальнейшем строится ММ и формулируются специфиче- ские допущения, позволяющие ис- пользовать математические допу- щения II Формирование ММ. Матема- тическая постановка задачи На базе I этапа Выбор и перечисление пере- менных состояния (фазовых координат), области их опре- деления и интервала време- ни, на котором целесообраз- но рассматривать управляе- мый процесс. Выбор системы (или систем) координат, в которых целесообразно рас- сматривать процессы движе- ния и управления Вектор состояния (фазовых координат) n x R X x x x x x x n n T n = ⊂ ∈ = ) dim( , , ) ,..., , , ( 3 2 1 размерность фазового пространства. Область определения x: n X , отрезок времени } , { 1 0 t t t t T ≤ ≤ = Выбор фазовых координат для кон- кретной задачи не является единст- венным (например, он зависит от выбора системы координат) II Установление общих зако- нов, которым подчиняется эволюция состояния рас- сматриваемой системы. Оценка области их примени- мости (области определения). ДУ движения ; ) ..., , , ( ; ) , , ( 2 1 T n f f f t dt d = = f y x f x область определения f: 1 , , m n Y X T t ∈ ∈ ∈ y x Здесь y – вектор пока неопределен- ных элементов в правой части уравнений движения. Выбор и перечисление управляющих переменных к Управляющие переменные m m T m R U u u u ⊂ ∈ = u u , ) ..., , , ( 2 1 Вектор неопределенных элементов y либо становится управлением u,
области их определения, а также управляющих пара- метров и возмущений. Управляющие ( проектные) параметры rrTnRAaaa⊂ ∈ = aa, ) ..., , , ( 2 1 ; возмущение ; , ) ..., , , ( 1 2 1 msrmRWwwwssTs= + + ⊂ ∈ = wwлибо известной функцией ( t, x), либо управляющим параметром а. В стохастических задачах w – слу- чайные функции. Анализ технических ограни- чений на значение управ- ляющих воздействий, фазо- вые координаты и управ- ляющие параметры. Ограничения типа равенств 0 ) ..., , , ( ) , ( 2 1 = ψ ψ ψ = µ Tt xψ; 0 ) ..., , , ( ) , , , ( v 2 1 = = TkkktauxkОграничения типа неравенств. Иногда ограничения представляют в виде: mmUU⊂ ∈ u; nnXX⊂ ∈ x; rrAA⊂ ∈ a, где rnmAXU, , – замкнутые ограничения области. II Выбор функциональных классов для управлений и траекторий. Определение допустимых траекторий, управлений и управляющих параметров. Обычно u(t) – кусочно-непрерыв- ные ограничения функции времени t, x(t) – непрерывные кусочно- гладкие функции времени. Формулировка начальных и граничных условий (цели эволюции системы). Условие типа 0 ) ..., , , ( ) ), ( , ; 0 ) ..., , , ( ) ), ( , ( ); 2 2 ( 0 ) ..., , , ( ) ), ( ), ( , , ( 2 2 1 1 1 1 2 1 0 0 2 1 1 0 1 0 = = = = + + ≤ = = = TlTlTlgggtthhhttrnlgggttttg |
|
|