Главная страница
Навигация по странице:

  • Область перенасыщенного влажного воздуха

  • Изображение в H ,d - диаграмме изотермы 0

  • Изображение в H,d- диаграмме изотерм меньше 0

  • пособие. ТТД ч1 учебное пособие. Техническая термодинамика


    Скачать 4.15 Mb.
    НазваниеТехническая термодинамика
    Анкорпособие
    Дата02.02.2023
    Размер4.15 Mb.
    Формат файлаdoc
    Имя файлаТТД ч1 учебное пособие.doc
    ТипУчебное пособие
    #917693
    страница14 из 19
    1   ...   11   12   13   14   15   16   17   18   19

    Область ненасыщенного влажного воздуха


    Для ненасыщенного влажного воздуха в H,d- диаграмме (область выше линии =100 %) изображение изотерм t=const ведется в соответствии с уравнением энтальпии для этой области, когда в воздухе может присутствовать только паровая фаза воды:

    .

    Изотермы в этой области представляют собой близкие к параллельным прямые линии с угловым коэффициентом, соответствующим величине

    (H/d)t=(2501+1,93t)/1000.

    Незначительное веерное расхождение изотерм вызвано произведением 1,93t.

    Изотерма 0 оС в этой области, как правило, представляет собой горизонтальную прямую. Это достигается выбором масштаба по осям H и d в соответствии со значением углового коэффициента изотермы 0 оС (H/d)t=0=2501/1000 при ее горизонтальном изображении.

    При d=0 получается равенство H=t, т.е. численные значения энтальпий и температур на оси H одинаковы. Поэтому ось энтальпий одновременно выполняет и роль оси температур.

    К аждой точке изотермы соответствует определенное значение относительной влажности воздуха . Это объясняется тем, что при Р=const и при t=const парциальное давление насыщения водяного пара постоянно: Рн=f(t)=const. Следовательно, на изотерме H,d- диаграммы влагосодержание пара



    однозначно определяет относительную влажность

    .

    Соединив на изотермах точки с одинаковыми , получают линии постоянных относительных влажностей воздуха (=const). При этом =0 соответствует d=0, т.е. линия =0 совпадает с осью энтальпий Н.

    Рис. 7.6. Диаграмма H,d атмосферного воздуха, используемая в практике

    Таким образом, ось энтальпий H в H,d- диаграмме выполняет три функции: является осью энтальпий, осью температур, линией постоянной относительной влажности воздуха =0. Линия постоянной максимальной относительной влажности =100 %, соответствующая влажному насыщенному воздуху, в H,d- диаграмме при d= стремится к изотерме 100 оС, т.к. в этом случае Рн стремится к атмосферному давлению Р, а при d=.

    При <100 % линии =const, достигая изотермы 100 оС, превращаются в вертикальные прямые. В этом случае давление насыщения водяного пара становится равным атмосферному давлению (около 1 бар) и при дальнейшем увеличении температуры больше изменяться не может (Рн=Р=const). Соответственно не меняется при =const в этой области и влагосодержание воздуха:

    ,

    т.е. линии =const, идущие выше изотермы t=100 oС, в H,d- диаграмме представляют вертикальные прямые.

    Поскольку давление насыщения водяного пара с уменьшением температуры уменьшается, то и влагосодержание пара для ненасыщенного влажного воздуха d=622Рн/(Р-Рн) на линии =const в области низких температур будет меньше, чем влагосодержание пара на этих же линиях в области высоких температур. Поэтому линии =const с уменьшением влагосодержания воздуха перемещаются в область более низких температур и приближаются к оси H. В области отрицательных температур линии =const в H,d- диаграмме расположены очень близко друг к другу и приближаются к оси Н почти вплотную (объяснение этого явления изложено ниже при описании отрицательных изотерм).

    Для полноты информации о влажном воздухе на H,d- диаграмму накладывается прямоугольная диаграмма Рп=f(d), отражающая зависимость парциального давления водяного пара от влагосодержания водяного пара в воздухе d=622Рп/(Р-Рп). Поскольку полное давление воздуха Р намного больше парциального давления пара Рп, зависимость Рп=f(d) представляет собой практически прямую линию.

    Область перенасыщенного влажного воздуха


    В области перенасыщенного влажного воздуха (ее называют областью тумана, она расположена в H,d- диаграмме ниже линии =100 %) кроме паровой фазы в воздухе может присутствовать жидкая или твердая фаза воды. При атмосферном давлении воздуха и температуре выше 0 оС могут одновременно существовать только паровая и жидкая фазы воды, а при температурах ниже 0 оС – только паровая и твердая (лед, снег) фазы воды, и только при 0 оС могут одновременно существовать все три фазы воды. Такое поведение воды в атмосферном воздухе объясняется тем, что жидкая фаза воды при отрицательных температурах может существовать только при давлениях выше давления тройной точки воды Ро, а максимальное парциальное давление водяного пара в атмосферном воздухе при этих температурах не может быть больше этого давления. Наглядно показать области возможного фазового существования воды в атмосферном воздухе можно в фазовой диаграмме P,t для воды (см. рис.7.3). Заштрихованная площадь соответствует возможному состоянию воды в атмосферном воздухе. Сверху эта область ограничена максимальным парциальным давлением насыщения водяного пара, соответствующим температуре 100 оС. Большего парциального давления водяного пара в атмосферном воздухе быть не может, т.к. парциальное давление водяного пара при температуре воздуха 100 оС равно полному давлению воздуха (РНмах = Р). Слева ограничение этой области идет по линиям фазовых переходов: по линии насыщения АК – где может находиться одновременно жидкая и паровая фазы воды, и по линии сублимации АС – где возможно одновременное существование твердой и паровой фаз воды.

    Рассмотрим сначала характер изотерм в области перенасыщенного влажного воздуха (область тумана) H,d- диаграммы при температурах больше 0 оС. Этой области соответствует уравнение энтальпии влажного воздуха в виде

    .

    Количество водяного пара в области тумана влажного воздуха при постоянной температуре не меняется. Оно соответствует максимально возможному влагосодержанию пара в воздухе при данной температуре и определяется в H,d- диаграмме на линии =100 %, как влагосодержание насыщенного воздуха dп1=dн1 (рис.7.7, точка А). Увеличение влагосодержания воздуха на изотерме в области тумана обусловлено увеличением жидкой фазы воды в воздухе. Парциальное давление водяных паров на изотерме в области тумана при этом остается постоянным и равным давлению насыщения (Рп1н1). Таким образом, в выражении энтальпии перенасыщенного влажного воздуха при t=const переменной будет только третье слагаемое, определяющее угол наклона изотермы в области тумана H,d- диаграммы выражением (H/d)t=4,1877t/1000. Угловой коэффициент для изотермы ненасыщенного влажного воздуха

    (H/d)t=(2501+1,937t)/1000>(H/d)t=4,1877t/1000,

    т.е. на линии =100 % прямая изотермы претерпевает излом, уменьшая угол наклона к оси d в области тумана.


    Рис. 7.7. К определению параметров перенасыщенного влажного воздуха по H,d - диаграмме при t>0 oC



    Меньший угол наклона изотерм в области тумана будет соответствовать меньшему значению температуры, а изотерма 0 оС в этой области при наличии в воздухе только паровой и жидкой фаз воды совпадает с линией постоянных энтальпий – параллельна оси d. Совпадение изотермы 0 оС с H=const в этом случае объясняет ее угловой коэффициент (H/d)t=0 = 0.

    Определение влагосодержания жидкой фазы воды в воздухе в области тумана выполняется нахождением разности общего влагосодержания и влагосодержания паровой фазы воды (dж1=d1-dн1).

    Поскольку в практике определения параметров влажного воздуха используется психрометр, то изотермы перенасыщенного влажного воздуха в H,d- диаграмме продолжают из области тумана в область ненасыщенного влажного воздуха (выше линии =100%) в виде прямых пунктирных (условных) линий. Показания мокрого термометра психрометра соответствуют температурам насыщенного (перенасыщенного) влажного воздуха, что позволяет по H,d- диаграмме по показаниям сухого и мокрого термометров определить все остальные характеристики ненасыщенного влажного воздуха (см. рис.7.6, точка 1). Для нахождения месторасположения точки в области тумана в H,d- диаграмме показаний психрометра недостаточно, т.к. температуры сухого и мокрого термометров одинаковы. В этом случае необходимо опытным путем определить полное влагосодержание воздуха, а при температуре 0 оС иногда требуется дополнительно определить влагосодержание жидкой или твердой фаз воды.
    Изображение в H,d- диаграмме изотермы 0 оС в области тумана зависит от того, в каких фазовых состояниях находится вода в воздухе. Выше показано, что если в воздухе находится паровая и жидкая фазы воды, то изотерма 0 оС совпадает с линией энтальпий H=const (линия ВС, рис.7.8). В случае нахождения в воздухе паровой и твердой (снег) фаз воды изотерма 0 оС более пологая, чем линия H=const, поскольку угол ее наклона к оси d, в соответствии с ее угловым коэффициентом (H/d)t=0=-335/1000, будет отрицательным (линия ВД). В качестве переменной величины в выражении энтальпии для изотермы 0 оС в области пар+снег будет влагосодержание только твердой фазы воды dто:

    . (7.18)

    Когда при температуре 0 оС в воздухе находятся сразу все три фазы воды: пар, жидкость и лед (снег), то в зависимости от количества жидкой и твердой фаз воды состояние влажного воздуха будет определено точкой, находящейся между изотермой 0 оС – пар+жидкость (прямая ВС) и изотермой 0 оС – пар+лед (прямая ВД). Между прямыми СВД будет область трехфазного состояния воды во влажном воздухе при t=0 оС.

    Для определения в этой области влагосодержаний жидкой и твердой фаз воды необходимы дополнительные построения в H,d- диаграмме. В качестве таковых могут быть использованы изотермы 0 оС с постоянными влагосодержаниями жидкой или твердой фазы воды. Линии изотерм 0 оС с постоянными влагосодержаниями твердой фазы воды dто=const, в соответствии с выражением (7.18), будут представлять прямые, параллельные линии ВС, поскольку для них угловой коэффициент равен нулю – (H/d)t=0= 0. В качестве примера на рис 7.8 рассмотрим точку А, находящуюся в области трехфазного состояния воды в воздухе при температуре 0 оС. Численное значение влагосодержания твердой фазы изотермы 0 оС с dтоА=const (прямая А1) можно определить в точке ее пересечения с прямой ВД, где жидкая фаза воды будет отсутствовать (точка 1). Для точки А, таким образом, влагосодержание твердой фазы воды будет соответствовать величине dтА=d1 - dно, а влагосодержание жидкой фаз воды – dжА=dА-dно-dтА=dА-d1.


    Рис. 7.8. К определению параметров перенасыщенного влажного воздуха по H,d - диаграмме при t=0 oC


    Аналогично изотермам 0 оС с постоянными влагосодержаниями твердой фазы воды в области СВД можно построить изотермы 0 оС с постоянными влагосодержаниями жидкой фазы воды dжо=const. Для этого в уравнении (7.18) необходимо выявить величину dжо. Это можно сделать, представив величину влагосодержания твердой фазы воды в виде разности: dто=d-dно-dжо. В результате такого преобразования выражение (7.18) примет вид

    . (7.19)

    В случае dжо=const уравнение (7.19) будет соответствовать прямой, параллельной в H,d- диаграмме линии ВД, т.к. у них одинаковые угловые коэффициенты – (H/d)t=0=(-335)/1000. Смещение вверх относительно линии ВД изотерм 0 оС с постоянным влагосодержанием жидкой фазы воды обусловлено в уравнении (7.19) слагаемым 335dжо/1000.

    В нашем примере, проведя через точку А прямую 2А, параллельную ВД, получим изотерму 0 оС с dжоА=const. Определить по H,d- диаграмме численное значение влагосодержания жидкой фазы на этой линии можно по точке ее пересечения с прямой ВС (точка 2), где будет отсутствовать твердая фаза воды в воздухе – dжА=d2-dно. Влагосодержание твердой фазы воды в этом случае будет представлено в виде разности: dтА=dА-dно-dжА=dА-d2.

    Таким образом, при t=0 оС в области трехфазного состояния воды в воздухе определение содержания жидкой и твердой фаз воды в H,d- диаграмме возможно как по изотермам постоянных влагосодержаний жидких фаз воды (А2), так и по изотермам постоянных влагосодержаний твердых фаз воды (А1). Для определения этих величин по H,d- диаграмме необходимо знать местонахождение интересующей точки (А) в этой области. Практически осуществить эту задачу возможно, только определив опытным путем полное влагосодержание воздуха d и одно из влагосодержаний его в жидкой или твердой фазе воды.
    Изображение в H,d- диаграмме изотерм меньше 0 оС

    и особенности характеристик влажного воздуха

    при отрицательных температурах

    Для температур меньше 0 оС в атмосферном влажном воздухе могут присутствовать только паровая и твердая фазы воды (см. рис.7.3). В случае ненасыщенного влажного воздуха имеет место только паровая фаза воды, для которой уравнение энтальпии соответствует выражению

    .

    П
    оскольку температура меньше 0 оС, то угол наклона этих изотерм в H,d- диаграмме для ненасыщенного влажного воздуха, определяемый угловым коэффициентом (H/d)t=(2501+1,937t)/1000, будет меньше, чем у изотермы 0 оС благодаря отрицательной составляющей 1,937t<0 (рис.7.9).

    Для определения относительной влажности воздуха при температурах меньше нуля градусов используются парциальные давления сублимации водяного пара и соответствующие этим давлениям объемы сухого "насыщенного" пара при х=1 (рис.7.10). Поскольку при отрицательных температурах давления насыщения для водяных паров в атмосферном воздухе быть не может, парциальное давление водяного пара в этом случае меньше давления тройной точки воды. В Р,v- диаграмме возможные состояния воды во влажном воздухе при отрицательных температурах могут характеризоваться точками 1, 2, 3 (см. рис.7.10):

    точке 1 соответствует ненасыщенный влажный воздух с относительной влажностью =Рпс=v"/v=/"<1, где Рс – давление сублимации, соответствующее изотерме t<0 оС, а v" – удельный объем сухого "насыщенного" пара при Рс, в этом случае Рпс, а водяной пар перегретый;

    точке 2 соответствует насыщенный влажный воздух с относительной влажностью =100 % и Рпс, =", v=v", а водяной пар во влажном воздухе будет в виде сухого "насыщенного";

    точке 3 соответствует перенасыщенный влажный воздух с относительной влажностью =100 %, Рпс, водяной пар во влажном воздухе кроме сухого "насыщенного" пара содержит твердую фазу воды (лед, снег).

    П
    оскольку давление сублимации меньше давления насыщения воды при температуре 0 оС, то и влагосодержание пара для ненасыщенного влажного воздуха в области отрицательных температур dс=622Рс/(Р-Рс) будет меньше, чем влагосодержание пара при температуре 0 оС и такой же относительной влажности воздуха. Поэтому линии =const для температур меньше нуля градусов в H,d- диаграмме расположены очень близко к оси H и по мере уменьшения температуры они приближаются к ней почти вплотную.

    В области перенасыщенного влажного воздуха изотермы с t<0 оС имеют угол наклона меньше, чем изотерма 0 оС при наличии в воздухе паровой и твердой фаз, благодаря отрицательной составляющей 2,1t в выражении энтальпии влажного воздуха:

    .

    Угловой коэффициент этой изотермы отрицательный и соответствует выражению (H/d)t=(-335+2,17t)/1000. Причем чем меньше температура, тем меньше будет угол наклона изотермы. Влагосодержанию твердой фазы в перенасыщенном влажном воздухе (точка А, рис.7.9) будет соответствовать разность влагосодержаний: dтА=dА-d, где dсА находится на линии =100 % при данной температуре и соответствующем ей парциальном давлении сублимации водяного пара.
    1   ...   11   12   13   14   15   16   17   18   19


    написать администратору сайта