Главная страница

Гетерогенный катализ. Теоретические основы гетерогенного катализа элементарные стадии в гетерогенном катализе


Скачать 7.29 Mb.
НазваниеТеоретические основы гетерогенного катализа элементарные стадии в гетерогенном катализе
АнкорГетерогенный катализ
Дата03.09.2019
Размер7.29 Mb.
Формат файлаdoc
Имя файлаГетерогенный катализ.doc
ТипДокументы
#85802
страница10 из 12
1   ...   4   5   6   7   8   9   10   11   12

Рис. 5.18. Схема механизма диссоциативной адсорбции Н2 на поверхности Ni.


Для процесса хемосорбции:
0,5Н2(Г) + Ni  H-Ni (5.25)
экспериментально определенные термодинамические характеристики составляют: H = -46 кДж/моль, S = -68 Дж/моль. Таким образом при 300К:
G = -46 + (3000,068) = -25,6 кДж/моль (5.26)
Это означает, что вероятность протекания данного процесса весьма высока.

Поскольку гетерогеннокаталитические реакции всегда протекают через стадию хемосорбции хотя бы одного из реагентов, то, очевидно, что каталитическая активность зависит от прочности связи (или энергии связи) в образующемся поверхностном комплексе. Энергию связи экспериментально можно оценить по значениям теплоты хемосорбции вещества на поверхности. Установлено, что теплота адсорбции снижается с увеличением степени заполнения поверхности адсорбатом, поэтому прочность связи оценивают по значениям начальных теплот адсорбции (т.е. при низких степенях заполнения).

Установлено, что теплоты адсорбции (а следовательно, и прочность связи в поверхностных соединениях) монотонно снижаются в рядах переходных металлов периодической таблицы слева направо.

Оказалось, что начальные теплоты адсорбции газов на металлах изменяются симбатно теплотам образования соответствующих гомогенных соединений из данного металла и адсорбата. Результатом этого являются линейные корреляции теплот адсорбции и теплот образования соответствующих гомогенных соединений. На Рисунке 5.19 верхняя прямая отображает линейную зависимость начальной теплоты адсорбции О2 на металлах в зависимости от теплот образования высшего оксида металла в пересчете на 1 г-атом металла. При этом для многих газов наблюдаются линейные корреляции начальных теплот адсорбции с теплотой образования высшего оксида металла (Рис. 5.19).

Из этого следует два важных вывода:

  1. Об относительной прочности связи в поверхностном комплексе адсорбат-металл можно судить по значениям теплот образования гомогенных соединений адсорбата с металлом или по значениям теплот образования высшего оксида данного металла.

  2. Природа связи в поверхностном комплексе во многом близка природе связи в соответствующем гомогенном соединении.


Последний вывод находит экспериментальное подтверждение в близости значений полос поглощения ИК-спектров хемосорбированных молекул на поверхности металлов и соответствующих им индивидуальных гомогенных комплексов. Так, например, валентные колебания С-Н связи в молекуле этилена, хемосорбированной на поверхности нанесенного катализатора Pd/SiO2 и в гомогенном -комплексе Pd(С2Н4) имеют частоты 2980 и 2952 см-1, соответственно, а валентные колебания С=С связи - 1510 и 1502 см-1.


Рис. 5.19. Линейная корреляция между начальной теплотой адсорбции O2, N2, C2H4, NH3, H2 на соответствующем металле и теплотой образования высшего оксида данного металла в расчете на 1 г-атом металла.
Классическим примером, демонстрирующим влияние энергии связи в поверхностном соединении на каталитическую активность металлов, является реакция гетерогеннокаталитического разложения муравьиной кислоты. ИК-спектры адсорбированной молекулы муравьиной кислоты идентичны спектрам индивидуальных формиатов соответствующих металлов, что говорит о том, что механизм катализа включает стадию образования поверхностного формиат-аниона, которая протекает по диссоциативному механизму (Рис. 5.20).

Рис. 5.20. Схема механизма гетерогеннокаталитического разложения муравьиной кислоты.
На Рисунке 5.21 изображена диаграмма относительной активности металлов в данной реакции от энтальпии образования формиата соответствующего металла. За меру каталитической активности металлов выбрана температура при которой скорость реакции достигает одного и того же значения. Чем ниже эта температура, тем активнее катализатор. Зависимость имеет экстремальный характер - так называемый вулканоподобный график. Такому виду зависимости можно дать следующее объяснение. Энтальпия образования формиата характеризует прочность связи поверхностного комплекса. Таким образом, слева от максимума расположены металлы относительно слабо хемосорбирующие муравьиную кислоту (Au, Ag); справа - образующие прочную связь (Ni, Co, Fe, W). И те, и другие являются слабыми катализаторами данной реакции. Для первых сила связывания слишком слаба, что бы в достаточной степени дестабилизировать молекулу муравьиной кислоты, а для вторых сила связывания настолько высока, что получающийся поверхностный комплекс очень устойчив и трудно подвергается дальнейшим превращениям.

Наиболее эффективными катализаторами являются металлы со средней теплотой образования формиатов (Pd, Pt, Ir, Ru, Rh), т.е. со средней силой связи в поверхностном комплексе. В данном случае имеет место оптимальное соотношение степени ослабления связи в адсорбированной молекуле муравьиной кислоты и устойчивости образующегося поверхностного соединения.

Аналогичные вулканоподобные корреляции активности катализаторов могут быть получены и с другими термодинамическими характеристиками, например с энальпиями адсорбции или десорбции.

Рис. 5.21. Относительная каталитическая активность металлов в реакции разложения муравьиной кислоты, как функция энтальпии образования индивидуальных формиатов металлов (вулканоподобный график).
Как уже отмечалось гетерогенно-каталитическая реакция протекает через последовательность стадий хемосорбции, химической реакции на поверхности и десорбции. В зависимости от соотношения энергетических барьеров (энергий активации) каждой из стадий, любая из них может являться лимитирующей и определять скорость реакции в целом, т.е. характеризовать каталитическую активность.

Показательным примером является зависимость активности первого ряда переходных металлов от энтальпии адсорбции на них азота и аммиака в промышленно важной реакции синтеза аммиака (Рис. 5.22).

Левая часть графика отражает корреляцию каталитической активности с энтальпией адсорбции азота, правая – с энтальпией адсорбции аммиака. Металлы слева от максимума связывают азот слишком сильно, образуя устойчивые поверхностные соединения (по природе своей близкие к нитридам металлов), которые мало активны в дальнейшем химическом превращении (энергия активации химической реакции слишком высока). Металлы справа от максимума - слишком прочно адсорбируют образующийся аммиак, т.е. энергия активации десорбции аммиака слишком высока. Это приводит к высокой степени покрытия поверхности аммиаком и, следовательно, к низкой скорости реакции. Оптимальная сила связывания наблюдается на Fe - классическом катализаторе синтеза аммиака.
1   ...   4   5   6   7   8   9   10   11   12


написать администратору сайта