Гетерогенный катализ. Теоретические основы гетерогенного катализа элементарные стадии в гетерогенном катализе
Скачать 7.29 Mb.
|
Рис. 5.29. Хемосорбция молекулы этилена на поверхности металлического никеля. Оказалось, что поверхность (111) Ni намного менее активна в реакции гидрирования этилена, чем поверхности (100) и (110). Объяснение этому явлению можно дать с точки зрения влияния стерических факторов. Экспериментально установлено (методом ДМЭ (LEED)), что межатомные расстояния Ni-Ni на различных кристаллографических плоскостях составляют 0,25 и 0,35 нм, а длина связи С-С у хемосорбированного этилена 0,182 нм. Таблица 5.9. Адсорбция и гидрирование этилена на разных кристаллографических плоскостях Ni.
По длинам межатомных расстояний в поверхностном комплексе можно вычислить угол связи Ni-С-С, который составляет 105о для плоскости (111) и 123о для плоскостей (100) и (110). Угол 105о по величине очень близок к тетраэдрическому (109о), поэтому связь в комплексе на плоскости (111) прочная и стабильная, и дальнейшая реакция протекает медленно. А на плоскостях (100) и (110) геометрическая ситуация менее выгодна. Хемосорбция менее прочная, молекула этилена более вытянута и более легко вступает в реакцию гидрирования. Суммарные данные приведены в Таблице 5.9. Аналогичный подход может быть распространен и на другие металлы. На Рисунке 5.30 приведена диаграмма влияния межатомного расстояния на поверхности (100) у металлов: Ta, Ni, Rh, Pd, Pt, Fe, W - на каталитическую активность в реакции гидрирования этилена. Рис. 5.30. Относительная скорость гидрирования этилена, как функция межатомного расстояния на плоскости (100) переходных металлов. Максимальную активность проявляет Rh у которого межатомное расстояние равно 0,375 нм (больше, чем у никеля, поэтому хемосорбированная молекула этилена более активирована и легче вступает в реакцию). При дальнейшем увеличении расстояния двухцентровая ассоциативная хемосорбция становится все слабее, что приводит к снижению концентрации активированных молекул на поверхности (а следовательно, и скорости реакции), вплоть до полной невозможности образовывать двухцентровой комплекс. При уменьшении расстояния металл-металл хемосорбция становится все более прочной, комплекс более стабильный и менее реакционно способный. Однако, ошибочным будет утверждение, что на каталитическую активность в рассмотренной модельной реакции влияет только геометрический фактор. Безусловно, необходимо учитывать и влияние энергетического фактора (теплота адсорбции). Но в данном, конкретном случае вклад геометрического фактора является определяющим. Структурно-чувствительные и структурно-нечувствительные реакции. Дисперсность металлов. Помимо взаимного расположения атомов катализатора на кристаллографических плоскостях, большое влияние также оказывает место расположения атомов на дефектах поверхности катализатора. Так, например, при гидрогенолизе циклогексана до н-гексана на платине, атомы на изломах имеют активность на порядок выше, чем атомы на ступенях, а наименее активны - атомы на террасах. Таким образом по активности поверхностные атомы платины можно разделить на три группы: Высоко координационно-насыщенные атомы на террасах: низкая активность; Атомы на ступенях: более активны, катализируют разрыв С-Н и Н-Н связей; Сильно координационно-ненасыщенные атомы на изломах: высоко активны, катализируют разрыв С-С связей. По причине высокой активности атомы ступеней и изломов не закоксовываются во время реакции. Предполагается, что образующийся на них слой карбонизированного продукта немедленно удаляется по реакции гидрирования. Методом ИК-спектроскопии была изучена хемосорбционная активность платины по отношению к СО. Были выявлены следующие комплексы СО на поверхности Pt: (СО) на ступенях: 2066 см-1, низкая степень покрытия поверхности, разрыхленная связь СО; (СО) на террасах: 2090 см-1, высокая степень покрытия поверхности. Эти данные объясняют высокую активность атомов Pt на ступенях в реакциях с участием СО. Еще один пример влияния структуры поверхности на каталитическую активность - разложение ацетонитрила на никеле (Рис. 5.31). Рис. 5.31. Адсорбция и разложение ацетонитрила на поверхности Ni. Было установлено, что на гладких поверхностях (111) адсорбция ацетонитрила слабая и обратимая, а расщепление протекает значительно медленнее, чем на плоскости (110), которая имеет более высокую плотность ступенек. Это объясняется тем, что молекула ацетонитрила всегда адсорбируется через атом азота и нитрильная группа располагается перпендикулярно поверхности. Таким образом, на ровной поверхности (Рис. 5.31а) геометрически не может произойти взаимодействие СН3-группы с поверхностью, и молекула остается не достаточно активированной. На изломе, ступени или рядом со ступенью происходит активирование водорода метильной группы и молекула легко подвергается разложению (Рис. 5.31 б,в). Как следует из рассмотренных примеров, скорость каталитической реакции во многих случаях сильно зависит от геометрического строения активного центра. Наблюдаемая скорость гетерогенно-каталитической реакции складывается из суммы скоростей реакций, протекающих на разных каталитических центрах поверхности. Очевидно, что суммарная, наблюдаемая скорость реакции пропорциональна концентрации активных центров (на единицу массы катализатора), которая, в свою очередь пропорциональна удельной поверхности частиц катализатора. Удельную поверхность металлических нанесенных катализаторов характеризуют дисперсностью. Дисперсность (степень дисперсности) - это отношение числа поверхностных атомов к общему числу атомов активного компонента. Рис. 5.32. Расположение поверхностных атомов в кристаллитах платины: а) октаэдрической конфигурации; б) кубоктаэдрической конфигурации. Рассмотрим зависимость дисперсности от размера частицы на примере идеального октаэдрического кристалла платины (Рис. 5.32 а). Самый маленький кристалл представляет собой октаэдр из шести атомов (по 2 атома в каждом ребре), каждый из которых расположен на поверхности кристалла. Значит дисперсность равна 1 (или 100%), так как: Следующий по размеру кристалл платины содержит по 3 атома в ребре и состоит из 19 атомов, из которых 18 атомов находятся на поверхности. Соответственно дисперсность, в данном случае, составляет 18:19 = 0,947 0,95 (или 95%). В Таблице 5.10 приведены данные по дисперсности для следующих, более крупных, кристаллов платины. Для частицы платины размером 1 мкм дисперсность составляет 0,001. В высокоэффективных промышленных платиновых катализаторах дисперсность нанесенной платины, как правило, выше 0,5. На Рисунке (5.32 а) видно, что атомы поверхности платины можно разделить на три типа по координационному числу: атомы на гранях имеют координационное число 9; атомы на ребрах имеют координационное число 7; атомы на углах имеют координационное число 4. Соотношение поверхностных атомов с различным координационным числом также зависит от размера кристалла, то есть от дисперсности. Например, самый маленький октаэдрический кристалл (число атомов = 6) состоит только из угловых атомов с координационным числом 4. В Таблице 5.10 приведено среднее координационное число атомов поверхности для кристаллов различной дисперсности. Таблица 5.10. Дисперсность и среднее координационное число поверхностных атомов в октаэдрических кристаллах платины.
Установлено, что для благородных металлов при высокой дисперсности преобладают угловые атомы; максимальное количество атомов на ступеньках достигается при средней дисперсности; террасы преобладают при низкой дисперсности. Поскольку каталитическая активность поверхностных атомов зависит от их координационной насыщенности, то естественно ожидать, что с уменьшением размеров частиц катализатора (т.е. с увеличением дисперсности) в некоторых реакциях должна изменяться наблюдаемая каталитическая активность. По этому признаку каталитические реакции делят на: Структурно-чувствительные - это реакции, для которых удельная активность или число оборотов на одном активном центре зависит от размера частиц катализатора; Структурно-нечувствительные - это реакции для которых удельная активность или число оборотов на одном активном центре не зависит от размера частиц катализатора. К структурно-чувствительным реакциям, как правило относятся те, которые протекают с разрывом связей в молекуле реагента, и активация реагентов происходит на полиядерных центрах. Структурно-нечувствительные реакции, это, как правило, реакции в которых активированный реагент связан с одним атомом поверхности катализатора (одноцентровая хемосорбция). Причем, одна и та же реакция может быть структурно-чувствительной на одном катализаторе и структурно-нечувствительной на другом. Примеры реакций обоих типов приведены в Таблице 5.11. Таблица 5.11. Примеры структурно-чувствительных и структурно-нечувствительных реакций.
|