Главная страница
Навигация по странице:

  • Рис. 19.23.

  • Рис. 19.24.

  • 19.5. ОБРАБОТКА МЕТАЛЛА СИНТЕТИЧЕСКИМИ ШЛАКАМИ

  • Рис. 19.25.

  • 19.6. ВВЕДЕНИЕ РЕАГЕНТОВ В ГЛУБЬ МЕТАЛЛА 19.6.1. Продувка металла порошкооб­разными материалами.

  • Теория и технология производства стали 1. Учебник для вузов. М. Мир, ООО Издательство act


    Скачать 7.23 Mb.
    НазваниеУчебник для вузов. М. Мир, ООО Издательство act
    АнкорТеория и технология производства стали 1.doc
    Дата22.04.2017
    Размер7.23 Mb.
    Формат файлаdoc
    Имя файлаТеория и технология производства стали 1.doc
    ТипУчебник
    #5208
    страница50 из 88
    1   ...   46   47   48   49   50   51   52   53   ...   88


    Рис. 19.22. Конструкция конвертера для ар­гоно-кислородной продувки:

    а — конвертер; б— фурма



    Рис. 19.23. Продувка металла в агрегате АКР

    (AOD) при производстве низкоуглеродистой

    высокохромистой стали
    шего снижения концентрации кисло­рода и серы (в результате перемешива­ния металла под высокоосновным шлаком), а также для возможно боль­шего восстановления окисленного в процессе продувки кислородом хрома. Существуют также варианты продув­ки, при которых кислород подают че­рез фурму сверху, а снизу — смесь О2 + Аг или только аргон (иногда азот).

    На рис. 19-24 показано, что сниже­ние парциального давления СО при 1700 ºС в случае аргоно-кислородной продувки обеспечивает получение за­метно более низких концентраций уг­лерода, чем при той же температуре, но при нормальном давлении. Срав­нительная простота организации аргонно-кислородной продувки, высо­кая производительность агрегатов и возможность изменять в широких пре­делах окислительный потенциал газо­вой фазы (отношение О2: Аг) привели к непрерывному расширению сферы распространения этого метода, кото­рый используют для производства не только коррозионностойких, но и электротехнических, конструкцион­ных и других сталей.

    Этот метод делает возможным по­лучение в конвертере высокохромис­тых сталей непосредственно из чугуна с использованием в качестве шихтово­го материала хромистой руды. Жидкий чугун подвергают внедоменной обработке (обескремниванию, дефос-форации), после чего заливают в кон­вертер. В процессе продувки в конвер­тере осуществляют обезуглерожива­ние, десульфурацию и легирование хромом. Одну часть хрома вводят в ме­талл с феррохромом, а другую — с хро­мистой рудой, оксиды которой восста­навливаются углеродом чугуна. На од­ном из заводов Японии организовано производство коррозионостойкой ста­ли из расплава никелевых и хромис­тых руд. Никелевую руду с высоким содержанием железа после дробления, обогащения и предварительного на­грева в смеси с углеродистым восста­новителем в нагретом до

    1000 °С со­стоянии загружают в рудовосстанови-тельную печь, в которой получают расплав с 13—15 % Ni. Хромистую руду также подвергают предварительной обработке и в нагретом до 500 ºС со­стоянии загружают в рудовосстано-вительную печь, где получают расплав с 40—43 % Сг. Расплавы смешивают в ковше и заливают в конвертер, в кото­ром подвергают аргоно-кислородной продувке для получения специальных высокохромистых никельсодержащих сталей.

    По сравнению с известным спосо­бом получения таких сталей из скрапа по схеме дуговая печь — конвертер ар­гоно-кислородной продувки затраты



    Рис. 19.24. Соотношение между содержани­ем углерода и хрома при различных темпера­турах металла при продувке его в печи (сплошные линии, рсо = О,1 МПа) и в AOD-конвертере (штриховая линия, рсо = = 0,01 МПа)
    энергии в новом процессе ниже, со­держание неметаллических включе­ний и азота меньше, поскольку ис­пользуют первородную шихту и не происходит образования атомарного азота в зоне.

    Возможности, которые появляются при использовании метода аргоно-кислородного рафинирования, вели­ки, и в мировой практике рождаются все новые и новые варианты процесса. Разрабатываются, в частности, вари­анты использования метода расплав­ления хромсодержащего и никельсо-держащего металлолома при вдувании в конвертер каменноугольной пыли с последующей аргоно-кислородной продувкой расплава и получением коррозионностойкой стали.

    19.5. ОБРАБОТКА МЕТАЛЛА

    СИНТЕТИЧЕСКИМИ ШЛАКАМИ
    Перемешивание металла со специаль­но приготовленным (синтетическим) шлаком интенсифицирует переход в шлак тех вредных примесей, которые должны удаляться в шлаковую фазу (сера, фосфор, кислород). В тех случа­ях, когда основную роль в удалении примеси выполняет шлаковая фаза, скорость процесса пропорциональна площади межфазной поверхности. Если ставится задача удаления из ме­талла неметаллических включений оп­ределенного состава, то соответствен­но подбирают состав синтетического шлака (например, металл, выплавлен­ный в кислой печи, обрабатывают ос­новным шлаком, металл, выплавлен­ный в основной печи, — кислым). Если ставится задача снизить содер­жание серы в металле, то подбирают шлак с максимальной активностью СаО и минимальной активностью FeO и т. п. Во многих случаях задача за­ключается, во-первых, в получении шлака заданных состава и температу­ры и, во-вторых, в разработке способа получения максимальной поверхности контакта шлаковой и металлической фаз. При этом должны быть обеспече­ны условия, необходимые для после­дующего отделения шлака от металла. Способ обработки металла в ковше жидкими синтетическими шлаками для удаления из металла нежелательных примесей был предложен в 1925 г. со­ветским инженером А. С. Точинским; в 1933 г. способ обработки металла жидкими известково-глиноземистыми шлаками был запатентован француз­ским инженером Р. Перреном. Прак­тическую проверку прошли многие способы, являющиеся вариантами способа обработки металла шлаками. Например, использовались шлаки:

    1) жидкие известково-железистые для снижения содержания фосфора;

    2) кислые для снижения содержания кислорода и оксидных неметалличес­ких включений в основной стали;

    3) жидкие известково-глиноземистые для десульфурации и раскисления ме­талла; 4) шлаки разного состава во время разливки и кристаллизации для удаления вредных примесей и получе­ния хорошей поверхности слитка.

    А. С. Точинским в 1927 г. впервые в мире была проведена в промышлен­ных масштабах дефосфорация бессе­меровской стали известково-железис-тым шлаком, а в 1928-1929 гг.— ра­финирование основной мартеновской стали кислым шлаком для раскисле­ния (содержание кислорода в металле удавалось снизить на 30—55 %). По­зднее известково-железистые шлаки (60-65 % СаО и 20-35 % оксидов же­леза) неоднократно применяли для обработки конвертерной стали, полу­чая высокую степень дефосфорации. Так, содержание фосфора в томасов-ской стали удавалось снизить с 0,06 до 0,01 %, а в рельсовой бессемеровской стали-с 0,05-0,09 до 0,01-0,03%. Однако, как показала практика, обра­ботка известково-железистым шла­ком углеродистого металла приводит вследствие протекания реакции (FeO) + [С] = СОГ + Fеж к бурному вскипанию и выбросам. Кроме того, обработка железистым шлаком затруд­няла проведение операции раскисле­ния металла. Начиная с 1959 г. в ЦНИИЧМ и на ряде отечественных заводов проведены широкие исследо­вания метода обработки стали извест-ково-глиноземистым шлаком. В соот­ветствии с разработанной технологией шлак с высоким содержанием СаО и добавками А12О3 (для снижения тем­пературы его плавления и обеспечения необходимой жидкотекучести) расплавляют в специальной электро­печи и заливают в сталеразливочный ковш при выпуске стали из сталепла­вильной печи или из конвертера. При сливе металла на находящийся в ков­ше синтетический шлак обе взаимо­действующие фазы (сталь и шлак) ин­тенсивно перемешиваются, шлак эмульгирует в металле и в какой-то степени металл эмульгирует в шлаке с последующим разделением фаз.

    Интенсивность и глубина протека­ния процесса зависят от высоты паде­ния струи металла и шлака, физичес­ких характеристик и состава шлака и др. Задача заключается в том, чтобы обеспечить в процессе обработки мак­симальную межфазную поверхность. Наибольшее влияние при этом имеет высота падения струи металла, а также вязкость шлака. Содержащаяся в ме­талле сера взаимодействует с СаО шлака и переходит в шлак. Поскольку синтетический шлак содержит обычно ничтожно малые количества таких ок­сидов, как FeO и МпО, обработка шлаком сопровождается снижением окисленности металла; в шлак перехо­дит также некоторое количество таких оксидных включений, которые хоро­шо смачиваются синтетическим шла­ком или взаимодействуют с ним.

    Основными требованиями, предъ­являемыми к синтетическим известково-глиноземистым шлакам, являют­ся минимальная окисленность (это обеспечивает хорошие условия для раскисления стали и ее десульфура-ции) и максимальная активность СаО (это обеспечивает хорошие условия для десульфурации стали). В связи с этим в синтетических известково-гли-ноземистых шлаках не должно содер­жаться оксидов железа, а содержание кремнезема должно быть минималь­ным. Содержание фосфора в таких шлаках исключается, иначе он при об­работке перейдет в металл. В тех слу­чаях, когда в шихте, из которой плавят шлак, содержится некоторое количе­ство кремнезема, в состав шлака вво­дят магнезию, образующую силикаты магния и уменьшающую таким обра­зом вредное воздействие кремнезема, снижающего активность СаО. Обыч­ный состав заводского синтетического шлака следующий, %: СаО 50—55; А12О3 37-43; SiO2 до 7 (в некоторых случаях до 10—15); MgO до 7 и (FeO + МпО) не более 1,0-1,5. Темпе­ратура плавления шлака в зависимос­ти от состава изменяется от -1400 ºС (в шлаке 50-55 % СаО, 38-43 % А12О3 и <4,0 % SiO2) до -1300 °С (в шлаке до 6-7% SiO2 и 6-7% МпО). Расход шлака 3—5 % от массы металла. При обработке металла синтетическим шлаком такого состава (высокая ос­новность и низкая окисленность) про­текают следующие процессы.

    1.Десульфурация. Обычно после об­работки шлаком содержание серы в металле снижается до 0,002—0,010 % (рис. 19.25).

    2. Раскисление. В соответствии с за­коном распределения Lo= a(FeO) /a] и а[o] = =а(FeO) /LO.Поскольку в синтетическом шлаке значениеa(FeO) нич­тожно масло, окисленность металла снижается (в 1,5—2 раза).

    3. Удаление неметаллических вклю­чений. В тех случаях, когда межфазное натяжение на границе капля синте­тического шлака — неметаллическое включение

    с ш_вкл меньше, чем меж­фазное натяжение на границе ме­талл — неметаллическое включение м-вкл т.е. при с. ш-вкл < м-вкл капли синтетического шлака будут рафини­ровать металл от включений (капли шлака, всплывая, уносят неметалли­ческие включения). Соотношение между величинами с ш.вкл и М-ВКЛ за­висит от состава включений. Практи ка показала, что общее содержание неметаллических включений после обработки синтетическим шлаком уменьшается примерно в 2 раза.


    Рис. 19.25. Эффективность десульфурации трубной стали 09Г2ФБ с обработкой на заво­де «Азовсталь» жидким известково-глинозе-мистым синтетическим шлаком:

    [S]o — содержание серы в стали до обработки шла­ком; [S] — то же, в готовой стали
    Достоинством метода обработки стали синтетическими шлаками явля­ется его небольшая продолжитель­ность — вся операция полностью осу­ществляется за время выпуска (слива) металла из агрегата в ковш, т. е. за не­сколько минут. Производительность агрегатов при этом не только не уменьшается, но и возрастает, так как такие технологические операции, как десульфурация и раскисление, пере­носят в ковш. При проведении опера­ции обработки металла шлаком при­ходится учитывать ряд ограничений: 1) нежелательно попадание в ковш, в котором проводится обработка, вмес­те с металлом и шлака из печи или из конвертера; 2) необходимо вводить в ковш помимо синтетического шлака раскислители (а при выплавке легиро­ванных сталей также и легирующие материалы); 3) в процессе обработки состав шлака изменяется. Особенно трудной задачей для практического осуществления является задача отсеч­ки шлака при выпуске металла. В про­цессе обработки синтетическим шла­ком несколько уменьшается окислен­ность металла, однако не настолько, чтобы полностью отказаться от при­менения раскислителей, поэтому кро­ме шлака в ковш вводят необходимое количество раскислителей.

    Метод обработки металла синте­тическим шлаком обеспечивает стан­дартные результаты десульфурации, но до известных пределов (обычно до 0,005-0,007 %), поэтому применение его особенно эффективно в случае обработки металла с высоким содер­жанием серы. В тех случаях, когда не­обходимо устойчиво получать более низкие концентрации серы, исполь­зуют другие способы. Если по услови­ям производства нет возможности разместить оборудование для рас­плавления синтетического шлака, ис­пользуют метод обработки металла на выпуске твердыми синтетическими шлаками. Обычно в состав таких сме­сей вводят СаО и CaF2. Расход таких смесей колеблется в пределах 3— 10 кг/т. И в этом случае наилучшие результаты по десульфурации и со­держанию неметаллических включе­ний получены при одновременном воздействии на металл и десульфури-рующей синтетической смеси, и рас­кислителей.

    Чаще других используют два техно­логических приема: 1) подачу на струю металла порошка, состоящего из извести, плавикового шпата и алю­миния; 2) присадку десульфурирую-щей смеси, состоящей из извести и плавикового шпата, на дно ковша пе­ред выпуском металла; при этом одно­временно на дно ковша присаживают все требуемое для раскисления коли­чество ферросилиция. Температура металла при использовании для де­сульфурации синтетических смесей в твердом виде должна быть выше обычной на 10—15 °С.

    Так, например, твердые шлаковые смеси (сокращенно ТШС) использо­вали в конвертерном цехе комбината «Азовсталь» при производстве труб большого диаметра для магистральных трубопроводов (сталь должна была со­держать не более 0,010 % S). Исполь­зовали ТШС следующего состава, %: известь 60; плавиковый шпат 20; маг­незитовый порошок 10; отходы, со­держащие алюминий, 10. При этом ввод в состав ТШС магнезитового по­рошка (используемого для торкрети­рования конвертеров или заправки мартеновских печей) обусловлен тем, что MgO при содержании его в шлаке до 10—12 % снижает температуру лик­видуса системы CaO-SiO2-Al2O3-MgO и вязкость таких шлаков, повышая ко­эффициент активности СаО и коэф­фициент распределения серы.

    Отходы алюминия и алюминиевых сплавов (алюмошлак) представляют собой механическую смесь, состоя­щую из 85 % металлической части (ко­рольки, всплески, нерасплавившаяся часть алюминиевого лома) и 15 % шлаковой части (состоящей в основ­ном из А12О3). В составе металличес­кой части содержится до 75 % А1. Ме­таллический алюминий в составе алю-мошлака выполняет двоякую роль: во-первых, обеспечивает дополнительное раскисление металла, во-вторых, об­разующийся после окисления алюми­ния А12О3 остается в шлаке и является дополнительным разжижителем шла­ковой смеси, находящейся в сталераз-ливочном ковше.

    Обработку стали ТШС проводили в ковше во время выпуска металла из конвертера. Порядок присадки смеси был следующий. Известь и плавико­вый шпат, предварительно смешан­ные, подавали в ковш емкостью 350 т по тракту сыпучих. Магнезитовый по­рошок и алюмошлак без предвари­тельного смешивания присаживали в ковш с рабочей площадки конвертер­ного отделения из переносного бунке­ра одновременно с известью и плави­ковым шпатом. Очередность подачи в ковш материалов во время выпуска соответствовала существующей: 1-я порция чушкового алюминия, ТШС, науглероживатель и ферросплав; 2-я порция чушкового алюминия, алюми­ниевый слиток. В результате получали сталь, содержащую 0,009 % S.

    19.6. ВВЕДЕНИЕ РЕАГЕНТОВ В ГЛУБЬ МЕТАЛЛА
    19.6.1. Продувка металла порошкооб­разными материалами. Продувка ме­талла порошкообразными материала­ми (или вдувание в металл порошко­образных материалов) проводится для обеспечения максимального контакта вдуваемых твердых реагентов с метал­лом, максимальной скорости взаимо­действия реагентов с металлом и вы­сокой степени использования вдувае­мых реагентов. Достоинством этого метода является также то, что реагент в металл вдувается струей газа-носите­ля, который оказывает определенное воздействие на металл. Газом-носите­лем может быть: 1) окислитель (на­пример, кислород или воздух); 2) вос­становитель (например, природный газ); 3) нейтральный газ (азот, аргон). В качестве вдуваемых реагентов ис­пользуют шлаковые смеси, а также металлы или сплавы металлов. Целью вдувания порошков является:

    1.Дефосфорация металла. При ис­пользовании шлаковых смесей для удаления фосфора в металл обычно вдувается в струе кислорода смесь, со­стоящая из извести, железной руды и плавикового шпата.

    2. Десульфурация. Для удаления серы в металл вводятся (в струе аргона или азота) флюсы на основе извести и плавикового шпата; смеси, содержа­щие кроме шлакообразующих также кальций или магний; реагенты, кото­рые вследствие высоких энергий взаи­модействия и соответствующего пиро-эффекта обычными способами вво­дить в металл нельзя (кальций, маг­ний).

    3. Раскисление и легирование, в том числе для введения металлов, которые вследствие вредного действия на здо­ровье человека обычными методами вводить опасно (свинец, селен, тел­лур).

    4. Ускорение шлакообразования, на­пример в конвертерных цехах вдува­ние порошкообразной извести ис­пользуется при переделе высокофос­фористых чугунов.

    5. Науглероживание. Вдуванием в металл порошкообразных карбонизаторов (графита, кокса и т. п.) обеспе­чивается решение разных задач, в час­тности: корректировка содержания уг­лерода в металле; при недостатке или отсутствии чугуна можно повысить в металле содержание углерода до пре­делов, необходимых для нормального ведения процесса; раскисление метал­ла (вдувание в окисленный металл по­рошка углерода вызывает бурное раз­витие реакции обезуглероживания; содержание кислорода при этом уменьшается, а выделяющиеся пузыри СО промывают ванну от газов и неме­таллических включений). Порошок графита или кокса можно вводить в металл непосредственно в печи, а так­же в ковш или на струю металла, вы­пускаемого из печи в ковш.

    Существуют и другие цели исполь­зования метода вдувания. Наибольшее распространение получила практика использования метода для введения в сталь такого реагента, как кальций.
    1   ...   46   47   48   49   50   51   52   53   ...   88


    написать администратору сайта