Главная страница
Навигация по странице:

  • Рис. 19.26.

  • Рис. 19.27.

  • 19.6.3. Организация подачи порош­ков

  • Рис. 19.28.

  • Рис. 19.29.

  • Рис. 19.30.

  • Рис. 19.32. Изменение содержания кислорода и серы в стали в процессе ее обработки в ков­ше продувкой кальцием

  • 19.6.4. Введение смесей без вдува­ния.

  • Теория и технология производства стали 1. Учебник для вузов. М. Мир, ООО Издательство act


    Скачать 7.23 Mb.
    НазваниеУчебник для вузов. М. Мир, ООО Издательство act
    АнкорТеория и технология производства стали 1.doc
    Дата22.04.2017
    Размер7.23 Mb.
    Формат файлаdoc
    Имя файлаТеория и технология производства стали 1.doc
    ТипУчебник
    #5208
    страница51 из 88
    1   ...   47   48   49   50   51   52   53   54   ...   88

    19.6.2. Вдувание калыщйсодержа-щих материалов. Кальций обладает вы­соким химическим сродством к кисло­роду, поэтому введение его в металл обеспечивает высокую степень рас­кисления металла; кроме того, каль­ций обладает высоким химическим сродством к сере, поэтому введение его в металл обеспечивает высокую степень десульфурации металла. Од­ним из наиболее распространенных раскислителей является алюминий; при его использовании в металле об­разуются тугоплавкие включения гли­нозема, ухудшающие чистоту металла, снижающие механические свойства изделий из него, а также затрудняю­щие разливку вследствие зарастания разливочных стаканов. Оксид СаО, образующийся при введении кальция, взаимодействуя с частицами А12О3, способствует образованию менее ту­гоплавких неметаллических включе­ний (рис. 19.26). Те из них, которые остаются в металле, имеют очень ма­лые размеры и сферическую форму; они не деформируются в процессе об­работки давлением, не вытягиваются в цепочки остроугольных кластеров, что характерно для включений глинозема, и в малой степени ухудшают свойства металла. Раскисленная алюминием сталь после введения кальция практи­чески не содержит пластичных сили­катов.

    Кальций уменьшает также вредное влияние оставшейся в металле серы, так как механические свойства суль­фида кальция CaS существенно выше свойств сульфида марганца MnS; в ре­зультате сульфиды также приобретают более округлую форму при значитель­но меньшей длине (вдоль направления пластической деформации). Кальций оказывает положительное влияние как реагент, существенным образом влия­ющий на скорость удаления включе­ний, поскольку присутствие кальция



    Рис. 19.26. Диаграмма состояния СаО-А12О3 (С— СаО, А—А12О3, I —жидкость)
    способствует переводу включений глинозема в жидкие алюминаты каль­ция, что, в свою очередь, способствует ускорению удаления включений из металла. Сталь, подвергнутая обработ­ке кальцием, характеризуется суще­ственно более высокой обрабатывае­мостью, что способствует повышению производительности металлообраба­тывающих станков благодаря возмож­ности работы на повышенных скорос­тях резания. Стали, обработанные кальцием, имеют лучшие показатели анизотропии свойств. При использо­вании добавок кальция значительно улучшаются показатели механических свойств стали и снижается сегрегация в крупных слитках для поковок и др.

    Растворимость кальция в металле невелика — в чистом железе она со­ставляет -0,032 %. Такие обычно встречающиеся в стали примеси, как углерод, кремний, алюминий, никель, повышают растворимость кальция. Наибольшее влияние оказывает угле­род: каждый 1 % углерода повышает растворимость кальция почти вдвое.

    Процесс введения кальция в сталь характеризуется рядом особенностей: пироэффектом, малой степенью усво­ения и соответственно повышенной стоимостью обработки и т. д. Учиты­вая это, распространение получили два приема работы: 1) добавка кальция в составе различных сплавов, смесей, соединений («разубоживание» мате­риала); 2) введение кальция (в виде этих смесей и соединений) не на по­верхность, а в глубь металла («инъек­ция» или «инжекция»). Само появле­ние термина «инъекционная» (или «инжекционная») металлургия связа­но с разработкой способов введения в глубь металла именно кальция. Осу­ществлялось введение кальция прежде всего методом его вдувания в порош­кообразном состоянии. Термин «инъ­екционная», или «инжекционная», металлургия введен шведскими метал­лургами, разработавшими одну из раз­новидностей способа с использования фурм 1-образного вида (рис. 19.27, а): способ Ijили I(от англ, injection— ин­жекция).

    В настоящее время для введения в глубь металла широко используют в порошкообразном виде различные



    Рис. 19.27. Фурма (а) для вдувания кальций-содержащих материалов в металл (1 — высо­коглиноземистый огнеупор; 2 — стальная трубка). Общий вид устройства б— см. на цветной вклейке
    шлаковые смеси, а также магний, ба­рий, РЗМ; способы ввода реагентов в глубь металла разнообразны, поэтому под терминами «вдувание порошков», «инжекционная металлургия» подра­зумевается большое число самых раз­нообразных технологий. Например, этим способом обрабатывают конвер­терную сталь, предназначенную для изготовления газопроводных труб, эк­сплуатируемых в тяжелых условиях Севера. Метод широко распространен за рубежом (под разными названия­ми); например, в Германии данный способ известен как TN '-процесс. В США, Канаде и некоторых других странах этот метод получил название CAB 2-процесс. Метод используют, в частности, при производстве стали, применяемой для изготовления листа для сварных тяжело нагруженных кон­струкций. Жидкую сталь выпускают в ковш, который затем закрывают крышкой, и через нее вводят фурму для вдувания кальция в струе аргона (рис. 19.28). Кальций испаряется и, поднимаясь вместе с пузырями арго­на, связывает серу в сульфид CaS, ко­торый ассимилируется шлаком. Боль­шое значение при этом имеет состав футеровки ковша (рис. 19.29). Введе­нием ЩЗМ в расплав в ковше с основ­ной футеровкой достигается получе­ние очень низкой активности кисло рода в стали и создаются благоприят­ные условия для удаления серы до значений -0,002 %. Содержание кис­лорода составляет 0,0006-0,0008 %.
    1 По названию предприятия «Thyssen Niederrhein AG» (Германия).

    2 От англ, calcium-argon-blowingкальций-аргон-продувка.
    Метод вдувания в металл в ковше порошков может использоваться также для получения стали с регламентиро­ванным содержанием азота и для леги­рования кремнием, никелем, молиб­деном, вольфрамом, свинцом и др. Для получения низкосернистой азотсодер­жащей стали могут использоваться смеси, содержащие цианамид кальция CaCN2. В этом случае несущим газом является азот. При вдувании смеси кроме насыщения металла азотом од­новременно протекают процессы науг­лероживания, раскисления и десуль-фурации. Условия перехода азота в ме­талл из несущего газа улучшаются при снижении в стали содержания кисло­рода и серы; и кислород, и сера являют­ся поверхностно-активными элемента­ми и препятствуют переходу азота в ме­талл. В случае вдувания в ковш в струе азота порошка СаО с 10 % Mg по мере удаления из металла серы и кис­лорода содержание азота возрастает (рис. 19.30), что особенно заметно на заключительной стадии продувки, ког­да содержание серы снижается до 0,02 %, а кислорода - до < 0,005 %. Со­став попадающего из печи в ковш шла­ка в значительной степени влияет на протекание реакции десульфурации в ковше (рис. 19.31) и низкие концентра­ции серы. Снижение температуры ме­талла при продувке его в ковше порош­ками по полученным на практике дан­ным составляет 2—3 °С /мин.

    19.6.3. Организация подачи порош­ков. Обычно порошкообразные реа­генты вводят в металл через фурму сверху. Существуют и другие спосо­бы введения порошков: 1) через ста­кан-отверстие в шиберном затворе; 2) в подводящий патрубок (или в ка­меру над подводящим патрубком) ус­тановки вакуумирования. В этом слу­чае дегазация металла вследствие ва­куумирования осуществляется одно­временно с десульфурацией под воздействием вдуваемых реагентов (например, смеси Са + CaF2)3.
    3 За рубежом метод часто обозначают VI или VIj (от англ. Vacuum-Injection).



    Рис. 19.28. Современная установка для вдувания в металл кальцийсодержащих материалов:

    / — ковш, накрытый крышкой; 2—фурма; 3 — карусельная установка с запасными фурмами; 4— питатель; 5_ бункера с материалами для вдувания; 6— пылеулавливающая установка; 7— устройства для подачи газо­порошковой смеси от питателя к фурме
    Роль футеровки ковша и шлака в ковше. При вдувании порошкообраз­ных материалов в ковш десульфурация происходит как на границе металла со шлаком, так и на поверхности всплы­вающих частиц вдуваемого материала. На рис. 19.29 отражена роль футеров­ки в процессе обработки такими силь­ными реагентами, как кальций. При взаимодействии растворенного в ме­талле кальция с входящими в состав шамотной футеровки оксидами (А12Оз



    Рис. 19.29. Влияние футеровки ковша на десульфурацию при вдувании в металл кальция:

    / — футеровка из доло­мита; 2— футеровка из шамота



    Рис. 19.30. Изменение содержания серы, кислорода и азота в металле во время продув­ки металла в ковше смесью СаО + 10 % Mg в струе азота

    307

    Рис. 19.31. Влияние состава шлака в ковше

    после продувки порошками на степень де-

    сульфурации
    и особенно SiO2) протекают реакции типа SiO2(фут) + 2 [Са] = 2 (СаО) + [Si]. При воздействии на металл такими сильными реагентами, как ЩЗМ или РЗМ, кислая или полукислая футеров­ка ковша может играть роль окисли­тельной фазы и образующиеся оксид­ные включения остаются в металле, загрязняя его. Кроме того, составляю­щие кислой футеровки ковша, частич­но переходя в шлак, снижают его ос­новность. На рис. 19.32 показана обобщенная схема изменения содер­жания кислорода и серы в процессе обработки кальцием в ковшах с раз­ной футеровкой. Практика показала, что во всех случаях окисленность ме­талла существенно влияет на процесс его десульфурации. Особо низкое со­держание серы (< 0,005 %) может быть получено лишь в том случае, когда ак­тивность кислорода в металле сниже­на до 0,001.

    Применяемые материалы и их рас­ход. Наряду с такими кальцийсодер-жащими соединениями, как силико-кальций и карбид кальция, для про­дувки порошками применяют и дру­гие материалы и смеси, в частности магний в смеси с известью или плави­ковым шпатом, смесь извести с плавиковым шпатом, а также синтетические жидкие или твердые шлаковые смеси на основе извести, глинозема и плави­кового шпата. В зависимости от соста­ва стали и применяемого метода обра­ботки расход смесей колеблется в пре­делах от 1 до 5 кг/т стали. Чаще других в качестве реагента используют силикокальций (рис. 19.33).

    При вдувании СаС2 и CaSi эффект раскисления и степень чистоты стали примерно одинаковы. Приходится, однако, учитывать, что при использо­вании силикокальция в сталь неиз­бежно попадает кремний, при исполь­зовании карбида кальция — углерод. В связи с этим СаС2 предпочитают ис­пользовать для обработки стали, со­держащей > 0,2 % С. Для обработки низкоуглеродистых сталей обычно ис­пользуют более дорогостоящий сили-кокальций. В случаях, когда произво­дят стали со строго контролируемым содержанием и углерода, и кремния (например, стали для нужд авиации и космонавтики), используют еще более дорогостоящий чистый кальций, на­пример в виде плакированной кальци-



    Рис. 19.32. Изменение содержания кислорода и серы в стали в процессе ее обработки в ков­ше продувкой кальцием:

    /—выпуск и раскисление алюминием; Я—транс­портировка ковша к месту обработки; Iffобра­ботка кальцием; IVразливка: а — кислая футеров­ка ковша; б—основная футеровка ковша; [О^щ — общее содержание кислорода в стали; [О]^^,, — со­держание растворенного кислорода



    Рис. 19.33. Влияние серы в штрипсовой ста­ли типа 09Г2ФБ на протяженность сульфи­дов с обработкой (1) и без обработки (2) си-ликокальцием (данные для МК «Азовсталь»)
    ем проволоки. Расход магния ограни­чивается высокой турбулентностью движения металла при введении маг­ния в ковш; при использовании смеси Mg + Са увеличивается общий расход вдуваемых материалов, но получают металл высокой чистоты. По данным исследований, для достижения почти полной изотропности стали необходи­мо достижение концентрации серы < 0,004 %; для получения сульфидов абсолютно глобулярной формы и раз­мером 1 балл требуется содержание серы в стали < 0,003 %. Многочислен­ные исследования показали, что по­вышение степени десульфурации на­блюдается обычно до расхода кальция 1,5 кг/т. Дальнейшее повышение рас­хода кальция не приводит к пропор­циональному росту степени десульфу­рации; она определяется уже другими факторами.

    В современном производстве боль­шинство сталей раскисляют алюмини­ем. При определении количества алю­миния в подаче расчет ведут обычно таким образом, чтобы в жидкой стали присутствовало остаточное его коли­чество. Алюминий не только удобен (технологичен), но и служит действен­ным модификатором структуры, обес­печивающим получение более плот­ной стали с заданным мелким зерном и хорошими показателями пластично­сти и вязкости. Вместе с тем А12О3 при общей относительно высокой чистоте стали вызывает резкое ухудшение жидкотекучести, затягивание каналов разливочных стаканов. Кристалличес­кие остроугольные включения А12Оз как концентраторы напряжений и очаги разрушения металла особенно опасны в условиях охрупчивания ста­ли при низких температурах и боль­ших мгновенных нагрузках. Отрица­тельное влияние А12Оз проявляется и на свойствах жидкого и твердого ме­талла; этим объясняется запрет на его применение для раскисления некото­рых марок сталей ответственного на­значения, например железнодорожно­го сортамента, хотя при этом возника­ют проблемы обеспечения качества металлопродукции. В данном случае используют обработку стали, раскис­ленной алюминием, кальцийсодержащими реагентами; тем самым устраня­ется негативное действие алюминия.

    На рис. 19.34 представлена услов­ная схема образования неметалличес­ких включений при различном соот­ношении Са / А1.

    При соотношении Са / А1 в пределах 0,07—0,10 преобладают включения

    СаО ∙ бА12О3, которые при темпера­турах сталеварения находятся в твер­дом виде и осаждаются на стенках разливочного стакана. При отноше­нии Са/А1 >0,10 преобладающим ти­пом включений являются жидкие включения СаО • 2 А12О3 и сталь хоро­шо разливается. Для обычных содер­жаний алюминия 0,015—0,040 % хоро­шая разливаемость может быть полу­чена при 0,002-0,06 % Са. При разра­ботке технологии в конкретных условиях производства необходимо



    Рис. 19.34. Оценка неметаллических включе­ний в зависимости от общих концентраций алюминия, кислорода и кальция (цифры у кривых — содержание кислорода общего, х 10 -4%)
    учитывать также следующие дополни­тельные факторы: 1) вторичное окис­ление металла, обработанного в ков­ше, существенно снижает эффектив­ность обработки и заметно уменьшает стабильность достигаемых показате­лей качества; 2) получение в процессе обработки очень чистого металла, снижение содержания в металле таких поверхностно-активных примесей, как кислород и сера, приводит при контакте с воздухом (в процессе раз­ливки) к заметному возрастанию со­держания в металле азота. Таким об­разом, при выборе технологии продув­ки приходится учитывать состав обра­батываемой стали, ее окисленность, содержание алюминия, возможности защиты металла от контакта с возду­хом и др. Определенное значение име­ет также продолжительность продувки металла в ковше аргоном после окон­чания подачи вдуваемых смесей. Обычно момент максимального удале­ния из металла включений устанавли­вается экспериментально в каждом конкретном случае.

    19.6.4. Введение смесей без вдува­ния. Во многих случаях достаточно удовлетворительные результаты де-сульфурации получают не вдуванием порошков, а более простым мето­дом — введением порошкообразных смесей сверху на струю металла. Так, в конвертерном цехе металлургического комбината «Азовсталь» для снижения содержания серы во время выпуска применили твердую шлакообразую-щую смесь извести и плавикового шпата. Смесь с транспортерной ленты подают в расположенные над конвер­терами расходные бункера, из кото­рых она по системе точек и промежу­точных бункеров поступает в сталеразливочный ковш.

    Смеси на основе извести и плавико­вого шпата используют на многих ме­таллургических заводах. Такой метод введения порошкообразных материа­лов по эффективности их использова­ния уступает методу вдувания. Исполь­зование данного метода целесообразно лишь в случае, когда отсутствует обору­дование для введения материалов не­посредственно в глубь металлической ванны или для расплавления и исполь­зования в жидком виде.

    Метод «выстреливания». Поскольку работы с высокоактивным порошко­образным кальцием требуют особой осторожности, можно использовать менее опасную технологию, которая заключается в выстреливании в ме­талл, находящийся в ковше, при по­мощи автоматического устройства «пуль», изготовленных из кальцийсо-держащих сплавов. Разработавшая этот способ японская фирма назвала его SCAT '-процессом.

    Одновременно с рассмотренным разработан метод введения в металл алюминия выстреливанием, назван­ный методом ABS 2.

    В случае раскисления алюминием металла в ковшах большой вместимос­ти (200т), когда требуется вводить в ковш значительные количества алю­миния, используют пневматический пулемет, стреляющий пулями длиной 450мм, диаметром 31мм и массой 0,8 кг. Скорострельность его составля­ет 800 пуль/мин. Вопрос о том, какой раскислитель (кальций или алюми­ний) вводить методом выстреливания, решают в каждом конкретном случае в зависимости от состава стали и требо­ваний, предъявляемых к ее качеству. Для реализации методов выстрелива­ния требуется сравнительно сложное оборудование. Более перспективным оказался описанный ниже метод ввода в металл сильных раскислителей или раскисляющих смесей (порошкооб­разных), помещенных в стальную обо­лочку в виде проволоки.
    1   ...   47   48   49   50   51   52   53   54   ...   88


    написать администратору сайта