|
Барт по ортопедии. Барт по ортобедиской стоматологии к экзамену 4 курс. Вопрос 1 Предмет ортопедической стоматологии, ее цели и задачи. Разделы специальности
Во времяполученияоттискаматериалпроявляетследующиесвойства: Положительные
Легко приготавливается. Хорошо соединяется с ложкой. Пластичен.
Точно отражает рельеф тканей протезного ложа. Не дает усадки. Легко отделяется от модели. Отрицательные
1- После структурирования становится твердым и при выведении возможна деформация.
2. Очень короткое время структурирования.
Показания. Оттискной материал применяется для получения функциональных оттисков с беззубых челюстей. Может применяться для временной фиксации искусственных коронок.
К этой группе материалов относятся Дентол, Репин, Кавекс и
1.
2. 3. 4. 5. 6.
Оттискные материалы, применяемые для получения
функциональных оттисков
Функциональный оттиск снимают индивидуальной ложкой и с помощью специальных функциональных проб. Применяют при протезировании больных полными и частичными съемными протезами в случае, когда следует уточнить соотношения между краем протеза и тканями, расположенными на границе протезного ложа.
Классификацияфункциональныхоттисков
{. По способу оформления краев оттиска:
• С помощью пассивных, жевательных или других движений;
• С помощью функциональных проб
II. По степени отжатая слизистой оболочки.
Оттиск компрессионный. Функциональный оттиск, при котором сдавливаются сосудистые поля (буферные зоны) протезного ложа. Компрессия достигается путем жевательного давления или произвольного давления рукой врача. В первом случае на пластмассовой ложке укрепляют прикусные валики и перед снятием оттиска определяют центральное соотношение челюстей.
Оттиск разгружающий. Функциональный оттиск, снимаемый при минимальном давлении. Термин неудачен, так как все оттиски снимаются с применением большего или меньшего давления.
Материалыдляснятияфункциональныхоттисков:
могут применяться различные оттискные массы — дентол, репин (цинкок-сидэвгенолыше), дентофоль (термопластическая ) и др. Предпочтительнее использовать силиконовые массы — сиэласт-69, дентафлекс и др.
Подробнее см. в соответствующих разделах.
ВОПРОС 6
Полимеры, применяемые в ортопедической стоматологии, их состав, свойства и показания к применению, внутренняя
и наружная пластификация полимеров.
Пластические массы - материалы, основу которых составляют полимеры, находящиеся в период формирования изделий в вязкотекучем или высокоэластичном, а при эксплуатации - в стеклообразном или кристаллическом состоянии. Широкое применение их обусловлено следующими основными свойствами: ' ••....
1. биоинертностью,
2. химической стойкостью,
3. механической прочностью, '••'
4. высокой технологичностью, : : • •' '• •
5. эстетическими свойствами.
Пластмассы делят на две основные группы — термопласты (термопластические) и реактопласты (термореактивные). Термопластические материалы при повторном нагревании размягчаются — они обратимые, а термореактивные — необратимые.
В состав пластмасс кроме полимеров входят добавки: Наполнители - влияют на прочность, твердость, теплопроводность, усадку, стойкость к действию агрессивных сред, липкость и др. Наполнители делятся по происхождению на минеральные и органические, по структуре на порошкообразные и волокнистые. При наличии химической связи наполнителя и полимера первый называют активным. Если такой связи не прослеживается наполнитель называют инертным. Наилучший эффект получается при применении активных наполнителей.
Пластификаторы - применяют для повышения пластичности материала в процессе переработки и эластичности готового полимера. Кроме того, они облегчают смешивание в полимере сыпучих ингредиентов, рейдируют клейкость полимерной композиции, снижают их вязкость и температуру формования.
Стабилизаторы - применяют для защиты полимеров от старения. Они снижают скорость химических процессов, приводящих к старению полимера.
Красители — применяют для получения окрашенных материалов. Базисные материалы окрашивают под цвет слизистой оболочки. Искусственные зубы должны соответствовать цвету зубов больного. Эктопротезы должны соответствовать цвету кожных покровов. Краситель должен обладать высокой стойкостью.
Сшивающие агенты — вводят в полимеры с целью создания поперечных связей между макромолекулами полимера.
Антимикробные агенты. Используются в очень малых концентрациях.
Показаниякприменению
1 . Для изготовления базисов съемных пластиночных протезов, седловидных частей дуговых протезов — базисные материалы (этакрил, бакрил, фторакс).
2. Для исправления (перебазирования) протезов, их починки, изготовления временных протезов, шин, моделей, индивидуальных ложек (протак-рил, протакрил-М, редонт).
3 . Для изготовления челюстно-лицевых протезов, обтураторов, пелотов, мягких амортизирующих подкладок под базисы протезов (эладент, ортосил-М).
4. Для изготовления искусственных зубов.
Внутренняяинаружнаяпластификацияполимеров
Пластификаторы применяют для повышения пластичности материала в процессе переработки и эластичности готового полимера. Кроме того, они облегчают сшивание в полимере сыпучих ингредиентов, регулируют их вязкость и температуру формования.
Внутренняя пластификация происходит за счет введения в макромолекулу метакрилата.
Внешняя пластификация обеспечивается введением в смеси перед полимеризацией дибутилорталата в количестве до 1%.
См. также вопрос 1 раздел 4.
ВОПРОС 7 Базисные материалы, их характеристика. Эластичные
пластмассы, показания к применению.
Материалы, применяемые для изготовления базисов съемных пластиночных протезов, серповидных частей дуговых протезов, называются базисными материалами. В настоящее время в стоматологии в качества базисных материалов широкое применение получили синтетические пластические массы.
Пластмассы для базисов протезов выпускают, в основном, в виде комплекта: порошок (полимер) - жидкость (мономер). При смешивании порошка с жидкостью образуется формовочная масса, которая в зависимости от состава порошка и жидкости твердеет при нагревании или самопроизвольно. Первый тип материалов - пластмассы горячего отверждения, второй - самотвердеющие пластмассы.
Пластмассы типа порошок-жидкость перерабатываются в изделия методами ПрСССОЬсШИй И ЛЙТьм.
Жидкость (мономер) - метиловый эфир метакриловой кислоты Ускоряют полимеризацию мономера тепло, УФ-лучи. Замедляет полимеризацию кислород воздуха. Полимеризация мономера происходит с образованием прозрачного стекловидного тела и сопровождается усадкой, достигающей 20%.
Полимер (порошок) — полиметилметакрилат.
Базисныепластмассыгорячейполимеризации
Этакрил (АКР-15) - тройной сополимер метилметакрилата, этилметакри-лата и метилакрилата. Полимер пластифицируется двумя способами: 1) внутренняя пластификация за счет введения в макромолекулу метакрилата и 2) наружная - добавление дибутилфталата (до 1%). Красящие пигменты и двуокись титана делают порошок полимера непрозрачным и придают ему розовую окраску. Жидкость содержит ингибитор гидрохинон (0,005%) и пластификатор - дибутилфталат (1%).
Акрел - сополимер со "сшитыми" полимерными цепями, образованными с помощью сшивагента (метилолметакриламида), введенного в мономер. Препарат состоит из порошка-полиметилметакрилата, пластифицированного дибутилфталатом (1-3%), и жидкости - метилметакрилата, содержащей сшивагент и ингибитор гидрохинон. Замутнитель - двуокись титата и окись цинка (1,3%).
Фторакс - фторсодержащий акриловый сополимер, обладает повышенной прочностью, химической стойкостью, пластмасса полупрозрачна.
Акронил используется для изготовления челюстнолицевых и ортодон-тических аппаратов, съемных шин и т. д. Порошок - привитый к поливи-иилэтилалю сополимер метилметакрилата. Жидкость - метилметакрилат, содержащий сшивагент - диметакрилат триэтиленгликоля. В жидкость введены ингибитор и антистаритель. По прочности акронил близок к фто-раксу, обладает меньшей водопоглощаемостью, хорошими технологическими показателями.
Эластичныепластмассы
Эластичные пластмассы применяются в качестве мягких амортизирующих прокладок для базисов съемных протезов, при изготовлении челюстнолицевых протезов, обтураторов, протезов лица, боксерских шин.
Они должны быть безвредными для организма, прочно соединяться с базисом протеза, сохранять эластические свойства и постоянство объема при пользовании протезом, иметь хорошую смачиваемость и показатель упругости, близкий к показателю упругости слизистой оболочки протезного ложа.
Эластические свойства большинства пластмасс обусловлены процессом пластификации, возникающим во время полимеризации.
Эладент- пластифицированный сополимер акриловых мономеров. Применяется для подкладок под базисы съемных протезов, окрашен в розовый цвет. Комплект состоит из порошка и жидкости. Порошок - сополимер ме-такрилового и метилметакрнлового эфиров. Жидкость - смесь этих эфиров с добавлением пластификатора.
Ортоксил-М - искусственный силоксановый каучук холодной вулканизации, полученный на основе силоксановой смолы. Применяется для мягких подкладок под базисы протезов. Выпускается в виде пасты, содержащейся в тубе и жидкости - катализатора. Паста с добавленным в нее катализатором наносится на протез, который затем вводится в полость рта и оформляется мягкая подкладка. Схватывание происходит в течение 40-50 мин.
ВОПРОС 8
Быстротвердеющие пластмассы, их состав, особенности применения, основные недостатки
Акриловые пластмассы приобретают свойства полимеризоваться без внешнего нагревания, если в их состав вводится активатор, способный расщеплять перекись бензоила на радикалы при температуре окружающей среды. Такие пластмассы называют самотвердеющими.
Протакрил состоит из порошка (полиметилметакрилат с добавлением 1,5% перекиси бензоила и 2% дисульфанамина) и жидкости (метилметакрилат с диметилпаратолуидином - 0,1-0,2%). Дисульфанамин и диметил-паратолуидин являются активаторами. Применяется для изготовления временных шин и аппаратов, для исправления и починок съемных протезов. Тесто полимеризуется через 15-20 мин, но процесс может быть ускорен нагреванием до 45°С.
Редонт - сополимер метилового и этилового эфиров метакриловой кислоты. Порошок - сополимер метилметакрилата и этилметакрилата (96,1%), перекись бензоила (1,5%), краситель (0,4%). Жидкость - метилметакрилат (98,8%), активатор - димстилпаратолуидин (1,2%), ингибитор-гидрохинон. Применяется для исправления и починок зубных протезов, аппаратов, изготовленных из пластмасс акриловой группы методом холодного отвердения. Полимеризация под давлением в 1,5-2 атм во влажной среде дает более прочную пластмассу с меньшим количеством пор и в то же время более эластичную.
Стадонт - самотвердеющая пластмасса, аналогичная по составу редон-ту. Используется для изготовления временных назубных шин при лечении пародонтоза (так как обладает повышенной адгезивностью к твердым тканям зубов) или переломов челюстей.
Карбопласт - самотвердеющая акриловая пластмасса, из которой одномоментно получают индивидуальные слепочные ложки. Порошок - полиметилметакрилат, пластифицированный дибутилфталатом. Жидкость - метилметакрилат с добавкой активатора - диметилаланина (3%). Порошок содержит инициатор (перекись бензоила), а жидкость - ингибитор (гидрохинон). В пластмассу в большом количестве (до 50%) вводится наполнитель - мел.
Особенности полимеризации самотвердеющих пластмасс:
1. По окончании полимеризации в пластмассе остается до 5% мономера, что в 10 раз больше, чем при полимеризации под тепловым воздействием.
2. Образующиеся полимерные цепи короче, чем при тепловой полимеризации.
3. При полимеризации выделяется большое количество тепла, что может вызвать образование в массе раковин (для предупреждения этого пластмассу следует опустить в холодную воду).
4. Некоторые активаторы полимеризации являются химически нестойкими веществами (диметилпаратолуидин, паратолуолсульфиновая кислота), в связи с чем через некоторое время пластмасса изменяет цвет.
Токсическое и аллергическое действие пластмасс на организм больного. Акриловые стоматиты
Токсические стоматиты. Токсические стоматиты бывают двух видов: химические и бактериальные. Первые, чаще всего, называются акриловыми, так как причиной их возникновения является избыток мономера в базисе из акрилата. По своей химической природе мономер является метиловым эфиром метакриловой кислоты. А все эфиры, как известно, обладают раздражающим действием на слизистую оболочку полости рта, а в больших концентрациях мономер является протоплазматическим ядом. Кроме местного, мономер может оказывать резорб-тивное действие на организм человека. Это возможно при высокой концентрации паров мономера в рабочих помещениях, когда нарушается техника безопасности. Наибольший клинический интерес представляют собой акриловые стоматиты, наблюдаемые у лиц, пользующихся пластмассовыми протезами. Их происхождение связано с избытком мономера в базисе, пластмассовых облицовках мостовидных протезов, при нарушении технологии и, в частности, режима полимеризации. Появляющийся при этом излишек мономера вызывает стоматит. Следует иметь в виду, что свободный мономер может появиться и при старении пластмассы, когда имеет место ее деполимеризация.
Ведущим симптомом в клинике токсического акрилового стоматита является разлитая гиперемия и отек слизистой оболочки протезного ложа. Чаще воспаление наблюдается на твердом небе и реже на альвеолярной части нижней беззубой челюсти. Область воспаления, как правило, совпадает с границами протеза. Больные при этом жалуются на чувство жжения слизистой оболочки под базисом протеза, в языке, губах. Дифференциальная диагностика проводится с контактной аллергией, но она весьма затруднительна благодаря схожести клинической картины. Профилактика токсических стоматитов заключается в соблюдении режима полимеризации.
Аллергические реакции в виде стоматитов, развивающиеся при пользовании протезами, относятся к контактным из группы реакций замедленного действия. Вещества, вызывающие контактную аллергическую реакцию, по своим свойствам не антигены, так как не имеют белковой природы. Они приобретают эти свойства в результате химического соединения с белками организма. Подобные вещества принято называть гаптенами.
В состав пластмасс входят следующие гаптены: мономер, гидрохинон, перекись бензоила, окись цинка и красители.
Клиническая картина при аллергии, обусловленной базисными материалами, настолько многообразна, что часто ее трудно отличить от клинической картины других реактивных изменений, имеющих иную причину и другой патогенез. В общем плане можно было бы говорить, во-первых, о контактной аллергии, которая проявляется воспалением слизистой оболочки протезного ложа, т.е. ткани, которая проходит в соприкосновение с материалом базиса и, во-вторых, об аллергических реакциях со стороны других систем организма. Аллергическое воспаление, протекающее по типу контактного стоматита, проявляется на слизистой оболочке языка, губ, щек, альвеолярных частей и особенно на небе. Оно резко ограничено областью соприкосновения базиса протеза с тканями. Слизистая оболочка здесь ярко-красного цвета, блестящая. Однако аллергическая реакция может наблюдаться не только на участке контакта с антигеном. Встречаются больные с экземами, глосситами, контактными стоматитами, нарушениями или извращением вкуса, отеком губ, острыми дерматитами лица и рук, бронхиальной астмой, паротитами и другими аллергическими проявлениями, обусловленным к акриловыми протезами.
Методика приготовления пластмассы к полимеризации. Значение соотношения компонентов "мономер-полимер"
Пластмассыгорячейполимеризации
Свойства полимер-мономерной смеси пластмасс горячей полимеризации зависят от размера и однородности размеров гранул. Оптимальный размер гранул обеспечивает высокие физико-механические свойства полимера, а также необходимую растворимость в мономере гомо- и сополимеров.
Усадка мономера в процессе полимеризации равна 20-21%. Усадка полимер-мономерной смеси (системы) меньше и зависит от соотношения мономер-полимер. Чем меньше это соотношение, тем меньше усадка. При соотношении 1:3 объемная усадка в 3,5 раза меньше, чем для индивидуального мономера и равна 5,8-6,0%. Таким образом, соотношение между мономером и полимером при изготовлении формовочной массы должно быть оптимальным.
В практике обычно берут объемное соотношение мономера к полимеру 1:3 или весовое 1:2.
Это позволяет получить усадку полимеризата в пределах 6-7%. Однако это очень высокая усадка, которая не позволит получить точные протезы. Однако усадка уменьшается и за счет других факторов до 0,5%.
Формовочную массу готовят в сосуде с крышкой. Для предупреждения образования воздушных пузырьков рекомендуется порошок осторожно насыпать в отмеренное количество жидкости. Для равномерного набухания и равномерной окраски массу сразу же перемешивают. Во время набухания массу следует еще 1-2 раза перемешать. Во избежание испарения мономера сосуд следует держать закрытым крышкой. Необходимо помнить, что количество мономера, взятого для приготовления формовочной массы, оказывает влияние на цвет и качество изделия. Избыток мономера делает изделие более хрупким, увеличивает усадку и ослабляет окраску.
В первый момент смешивания порошка и мономера образуется смесь, напоминающая влажный песок. Это первая стадия полимеризации полимер-мономерной смеси. Через некоторое время, длительность которого зависит от размеров гранул, температуры, наличия пластификатора и др. смесь превращается в липкую массу. На этой второй стадии за шпателем тянутся от массы нити, она пристает к пальцам, стенкам сосуда. Эта стадия липкая или тянущихся нитей. Через некоторое время липкость массы теряется, процесс переходит в третью стадию - тестообразную Образовавшаяся тестообразная масса легко формуется. Через некоторое время масса становится рези-ноподобной (четвертая стадия) и, наконец твердеет (пятая стадия) . Формовочную массу следует помещать в прессформу в тестообразном состоянии. Скорость набухания можно регулировать изменением температуры системы полимер-мономер. Поместив смесь в холодильник, можно удлинить набухание на несколько часов. Только при этом следует предохранить смесь °т попадания в нее паров влаги.
Пластмассыхолодногоотверждения (самотвердеющие)
При смешивании порошка с жидкостью активатор расщепляет перекись енз°ила на радикалы при обычной температуре окружающей среды, в результате чего происходит инициирование реакции полимеризации. В качестве активаторов используют третичные амины, меркаптаны, производные сУльфиновой кислоты и др.
После смешивания компонентов (порошка и жидкости) полимеризация протекает в течение 20-30 минут. Ускорить отвердевание можно, поместив форму в воду при температуре 37° С. При открытой полимеризации пластмассы (например, клиничес-кяя перебазировка протсЗа) изделие следует помещать под источник внешнего тепла (например, электролампа) при температуре не выше 55"С.
Приготовляя формовочную массу из самотвердеющей пластмассы, следует помнить о правильном соотношении мономера и полимера. При увеличении количества мономера увеличивается усадка изделия, удлиняется процесс полимеризации, повышается содержание остаточного мономера.
В зависимости от вида работы формовочные массы используются на различных стадиях набухания.
1 стадия - песочная. Она появляется сразу после смешивания порошка с жидкостью и в зависимости от температуры окружающей среды может продолжаться от 30 сек. до 5 мин. В песочной стадии смесь не пригодна к пользованию.
2 стадия - вязкая, тянущихся нитей. Начальный период этой стадии характеризуется появлением тянущихся нитей, липкостью массы, высокой пластичностью и текучестью. В начале 2 стадии набухания формовочную массу используют для работ, требующих адгезии. Нанесенная на базис протеза формовочная масса в этой стадии после отверждения образует прочное соединение с основной пластмассой.
3 стадия - тестообразная, формовочная масса в этой стадии набухания характеризуется потерей липкости, хорошей пластичностью и меньшей текучестью, чем во второй стадии. В таком состоянии формовочную массу удобно формировать на гипсовых моделях, изготовляя защитные небные пластинки, замещающие, формирующие и обтурирующие протезы, индивидуальные ложки, ортодонтические аппараты и др. стоматологические конструкции. Массу можно использовать также для перебазирования протеза, особенно когда необходимо получить отпечаток рельефа протезного ложа при возможности создания значительного жевательного давления.
4 стадия - резиноподобная. На этой стадии формовочная масса сохраняет приданную ей форму даже при незначительном кратковременном механическом воздействии на нее. Протез при перебазировании удаляют из полости рта тогда, когда формовочная масса находится в резиноподобном состоянии. После окончательного затвердевания пластмассы протез следует тщательно припасовать, используя копировальную бумагу.
ВОПРОС 11
Методы и режим полимеризации пластмассы. Последствия его нарушений. Виды пористости пластмасс
Основные методы получения пластмасс - полимеризация и поликонденсация. При полимеризации молекулы мономеров связываются в полимерные цепи без высвобождения побочных продуктов реакции (вода, спирт и др.). При поликонденсации происходит образование некоторых побочных, не связанных с полимером веществ.
Полимеризацияимееттристадии.
1. Активация молекул мономера (разрыв двойных связей, распад инициатора па радикалы, имеющие свободные валентности, по месту которых и происходит рост полимерных цепей).
2. Рост полимерной цепи из активных центров (на концах цепей постоянно присутствуют свободные радикалы, обеспечивающие рост полимерной цепи). При соединении мономолекул с одной двойной связью образуются линейные полимеры. Если мономеры имеют больше одной двойной связи или под воздействием активных веществ образуются поперечные связи, полимер приобретает "сшитый" вид.
3. Окончание процесса полимеризации, обрыв полимерной цепи при прекращении действия факторов, вызывающих полимеризацию.
Полимеры, полученные при полимеризации различных мономеров, обладающих несходными свойствами, носят название сополимеров.
На основании своих исследований М. М. Гернер с соавт. рекомендует следующий режим полимеризации формовочной массы. Вода, в которую помещена гипсовая форма, нагревается от комнатной температуры до 65°С в течение 30 минут. Такая температура обеспечивает полимеризацию формовочной массы под воздействием теплоты реакции. В результате саморазогрева температура массы достигает примерно 100°С, что обеспечивает хорошую конверсию мономера. Вода, температура которой поддерживается на уровне 60-65°С, предотвращает снижение температуры пластмассы. После 60 минут выдержки воду подогревают до 100°С в течение 30 минут и выдерживают 1-1,5 часа. По завершении полимеризации форму медленно охлаждают на воздухе.
После полимеризации полимеризат всегда содержит остаточный мономер. Количество его зависит от природы инициатора, температуры, времени полимеризации и др. Выдержка гипсовой формы в кипящей воде способствует не только повышению молекулярной массы, но и уменьшению содержанию остаточного мономера. Часть оставшегося мономера связана с макромолекулами (связанный мономер), другая часть находится в свободном состоянии (свободный мономер). Свободный мономер мигрирует к поверхности изделия и растворяется в средах, контактирующих с зубным протезом. Поскольку экстрагируемые жидкими средами из пластмассы остаточные продукты могут оказывать вредное общее и местное воздействие на организм пациента, необходимо добиваться минимального содержания остаточного мономера в пластмассах. Нагрев до 100°С резко сокращает количество остаточного мономера, однако добиться полного его отсутствия практически невозможно. В пластмассах горячей полимеризации его содержится около 0,5%, а в самоотвердеющих - 3-5%. Остаточный мономер оказывает существенное влияние на прочностные и другие свойства полимера. Содержание остаточного мономера в пластмассах горячей полимеризации более 3% резко снижает их прочность. Пластмассы быстро стареют, у них наблюдается повышенное водо-масло-спиртопоглощение.
Различаютследующиевидыпористости:
1. Газовая. Она возникает в результате испарения мономера внутри полимеризующейся формовочной массы. Реакция полимеризации является экзотермической. Выделяющаяся теплота полимеризации не может быть быстро отведена от полимеризующейся массы, так как она и гипс являются плохими проводниками тепла. Температура кипения мономера 100,3°С, а температура, которая развивается в массе за счет экзотермичности процесса, может составлять !20°С и более. В этих условиях мономер закипает и его пары, не имея выхода наружу, вызывают пористую структуру материала. Газовая пористость проявляется в глубине материала и тем значительнее, чем больше масса, поэтому в протезах нижней челюсти она наблюдается чаще. Газовую пористость можно избежать, если соблюдать правильный температурный режим, т. с. постепенный нагрев полимеризующейся массы от комнатной температуры.
2. Пористость сжатия. Она возникает в результате уменьшения объема полимеризующейся тестообразной массы. К пористости сжатия приводит недостаточное давление (вследствие чего остаются пустоты) или недостаток формовочной массы. Пористость сжатия возникает всегда в тех местах, где нет дос-
таточного давления
•} Т .-*» А
г----Л*.,эуСаЬа ^|0| ьИд иОрИС|ОСТИ МОЖНО рйССМа!
г-^ --"Г-------------•• .'*"."Ч* |^1л\*\^ть* I[-Ч-ЛЭЧ Ю
как плохое структурирование материала, она наблюдается при недостатке мономера. Мономер летуч и быстро испаряется с открытой поверхности тестообразной формовочной массы, в результате чего при прессовании не получается однородной гомогенной массы. Гранулярная пористость может возникнуть при открывании кюветы для контроля количества внесенной в форму массы. Она наблюдается обычно в тонких участках протеза, так как на этих участках испарившийся мономер не может восполниться за счет его миграции изнутри к поверхности изделия.
ВОПРОС 12
Внутренние напряжения в пластмассе. Предупреждение их
возникновения
Остаточные напряжения. В пластмассовых изделиях, независимо от способа их приготовления, всегда имеются значительные остаточные напряжения. Внутренние напряжения в акриловых протезах вызывают их преждевременное растрескивание и коробление. Протез представляет собой армированное изделие, в котором зубы, кламмеры, дуги и др. детали являются арматурой. Температурные изменения размеров материалов арматуры меньше, чем пластмассы в 10-20 раз.
В местах монтажа арматуры полимер растягивается при охлгшдении и возникают местные напряжения. Большее напряжение возникает около фарфоровых зубов, чем пластмассовых. Таким образом, наличие арматуры повышает вероятность появления трещин.
К внутренним напряжениям приводит различная толщина отдельных частей изделия. Толстые части дают большую усадку по абсолютной величине, тонкие - меньшую, в связи с чем в местах перехода появляются напряжения. Остаточные напряжения возникают в процессе изготовления полимера. При нагревании кюветы вначале повышается температура наружного слоя пластмассы и затвердевание начинается в поверхностных слоях, сопровождаясь усадкой. Внутренние слои вначале имеют более низкую температуру. Опережение затвердевания наружного слоя в пластмассах горячей полимеризации приводит к возникновению в нем внутренних напряжений растяжения. В дальнейшем затвердевание внутренних слоев вызывает уменьшение их объема и они оказываются под воздействием растягивающего напряжения, т.к. к этому времени наружные слои приобретают жесткость.
Поскольку напряжения обязательно возникают в процессе изготовления протеза, их следует снимать. Для этого протез следует обработать при определенном температурно-временном режиме в различных средах. При этом улучшаются механические свойства изделия, стабилизируются геометрические размеры и увеличивается срок эксплуатации. В качестве сред теплоносителей используют воздух и жидкости. Из различных видов термической обработки наиболее эффективным является отжиг, который надо проводить при такой температуре, когда изделие еще не деформируется.
М. М. Гернер и М. А. Нападов предлагают следующую термообработку протезов. Отжиг в термошкафу, нагревая изделие со скоростью 0,7-1,5°С в минуту до 80±3°С. После 3-4 часовой выдержке при этой температуре изделие медленно охлаждают до 30-40 С.
Растрескивание. Одним из самых распространенных видов разрушения пластмасс является возникновение трещин на поверхности материала при одновременном действии напряжения и окружающей среды.
При растрескивании, в зависимости от величины и характера распределения напряжений, возникает одна магистральная трсгцнпа илм сстк?» мел ких трещин. При воздействии больших напряжений образуется обычно одна магистральная трещина, при малых напряжениях возникает множество трещин. Растрескивание проявляется особенно быстро при воздействии органических растворителей (этиловый спирт, ацетон, бензол и др.).
Внутренние напряжения через некоторое время могут привести к трещинам на поверхности базиса. Например, можно часто видеть трещины, радиально расходящиеся в пластмассовом базисе от шеек фарфоровых зубов. Если протез, которым пользуется больной, часто высыхает при извлечении изо рта и вновь увлажняется, то со временем могут возникнуть трещины в результате чередующегося сжатия (при высыхании) и расширения (при поглощении воды). Базисные материалы с увеличенной водопоглащаемостыо более склонны к растрескиванию. Если при полимеризации формовочная масса контактировала с водой, то получается полимер с повышенной водопоглощаемостью.
ВОПРОС 13
Характеристика металлических сплавов, применяемых в
ортопедической стоматологии. Нержавеющая сталь,
кобальто-хромовый сплав (КХС). Сплавы титана, их
свойства, показания к применению. Изменение механических свойств нержавеющей стали после холодной
деформации.
Чистые металлы в ортопедической стоматологии не применяются, т. к. для зуботехнических целей необходимы сплавы, обладающие разнообразными свойствами.
Сплавы, применяемые в ортопедической стоматологии, должны иметь определенные свойства, которые можно разделить па две группы.
К первой относятся общемедицинские свойства. Сплавы не должны вызывать в полости рта пациента токсического и аллергического действия.
Ко второй относятся технологические свойства.
1. Высокая антикоррозийная стойкость.
2. Ковкость, текучесть при литье.
3. Прочность, твердость.
4. Малая усадка при литье, невысокая температура плавления.
5. Хорошая механическая и электролитическая обработка и полировка.
6. Возможность паяния.
Все эти требования зависят от количества компонентов (металлов), входящих в сплав. Каждый из них привносит свое качество. Так, например, хром (17—19%) придает сплаву коррозийную стойкость, никель (8—10%) — пластичность, усиливает вязкость, делает его ковким.
Для улучшения литейных свойств добавляют титан (около 1%), кобальт придает стали высокие механические свойства, молибден — мелкокристаллическую структуру, что так же усиливает прочность. Марганец понижает температуру плавления, способствует удалению газов и сернистых соединений. Нержавеющаясталь
Наиболее распространенной для изготовления штампованных коронок и паяных мостовидных протезов является нержавеющая сталь марки IX 18Н9Т: (72% железа, 18% хрома, 9% никеля, 0,1% углерода и 1% титана). Хром обеспечивает коррозионную устойчивость, никель придает сплаву пластичность, делает его ковким, облегчает обработку давлением. При термической обработке сплава при температуре 450-850°С могут образоваться химические соединения хрома с углеродом - карбиды хрома, молекулы которых размещаются по границам кристаллических зерен. Это приводит к уменьшению количества свободного хрома в этих зонах, в связи с чем увеличивается возможность возникновения межкристаллической коррозии.
Для предупреждения образования карбидов хрома в состав стали вводят титан, вступающий в связь с углеродом. При этом образуются карбиды титана, а образование карбидов хрома прекращается, что предотвращает межкристаллическую коррозию стали.
Для улучшения жидкотекучести и жаростойкости стали вводится 2,5% кремния (сплав ЭИ-95).
Механические свойства нержавеющих сталей резко меняются после холодной деформации и наклепа, в результате чего образуются карбиды металлов, в основном хрома.
Для восстановления свойств стали ее необходимо нагреть до 1100° и охладить (отпустить). Эта процедура восстановит пластичность сплава, повысит его антикоррозийные свойства. Кобальтохромоникелевый сплав (КХС)
Кобальтохромоникелевый сплав применяется для литья конструкций высокой точности (каркасы литых мостовидных протезов, дуговых протезов и литых базисов для съемных протезов). Этот сплав имеет небольшую усадку и обладает хорошими механическими свойствами.
Сплав КХС (Кобальтохромоникелевый сплав) с температурой плавления 1460°С содержит: кобальта 67%, хрома 26%, никеля 6%, молибдена и марганца по 0,5%. Кобальт имеет высокие механические свойства, хром вводится для придания твердости и антикоррозийных свойств, молибден усиливает прочностные свойства, никель повышает вязкость сплава, марганец улучшает жидкотекучесть, понижает температуру плавления. Примесь железа допускается не более 0,5%, она увеличивает усадку при литье и ухудшает физико-химические свойства сплава.
Сплавытитана
Титан плавится при температуре 1690 "С, имеет плотность 4,5 г/см:\ В настоящее время получен титан ВТ 1-0 и ВТ 1-00 (соответственно 99,55 и 99,48% чистоты). Примерно 0,5% составляют примеси железа, азота, водорода, которые ухудшают свойства титана. Усадка титановых сплавов при литье составляет 2-3%. Сплавы титана имеют биологическую инертность за счет защитной пленки из оксида титана, высокую удельную прочность, хорошую химическую стойкость ко многим агрессивным средам.
Сплавы титана применяются для изготовления имплантатов; для изготовления зубных протезов (Пермь, Г.И.Рогожников)
На базе новых металлургических технологий разработаны сплавы нике-лида титана (нитинола), имеющие хорошую коррозионную стойкость, пластичность, свойство "памяти". Проволока из нитинола применяется в орто-донтии. Сплавы благородных металлов (золото, золото-платина,
серебро-палладий). Их состав, свойства, показания к
применению. Пробирные системы (метрическая,
золотниковая, каратная)
Сплавы золота различают по процентному содержанию золота. Чистое золото обозначают 1000-ой пробой. Помимо метрической пробы в России существовала до 1927 г. золотниковая. В основу ее положена весовая единица „фунт", состоящая из 96 золотников, химически чистое золото обозначалось 96 пробой. Одна золотниковая проба равна 1000 : 96 = 10,4 метрической пробы. Следовательно, для перевода золотниковой пробы в метрическую необходимо умножить показатель золотниковой пробы на коэффициент 10,4. Помимо русской и метрической системы существует каратная система. Карат является единицей веса - равен 0,12 г. По каратной системе исчисляется ценность алмазов и других камней. Чистое золото равно 24 единиц-карат. Для перевода каратной системы в метрическую следует показатель каратной системы умножить на 41, 66.
Сплав золота 900-й пробы содержит 90% золота, 4% серебра, 6% меди, хорошо поддается штамповке, имеет невысокую твердость и легко поддается стиранию. Применяется он для изготовления штампованных коронок и паяных мостовидных протезов.
Сплав золота 750-й пробы содержит 75% золота, 8% серебра, 7,8% меди, 9% платины. Платина и медь делают сплав более твердым, упругим. Сплав имеет небольшую усадку при литье и применяется для изготовления каркасов дуговых и шинирующих протезов, кламмеров, штифтов, вкладок, крам-поиов и проволоки.
Если в сплав 750-й пробы добавить 5-10% кадмия, то температура плавления снижается до 800°С, и сплав можно использовать как припой.
В последние годы широкое распространение получили сплавы на основе палладия и серебра. Эти сплавы технологичны, с высокой механической прочностью и высокими антикоррозийными свойствами. К недостаткам следует отнести серебристый цвет, который может темнеть из-за окисления серебра, а также повышающаяся стоимость серебра из-за ограниченности запасов на земле.
В большинстве таких сплавов серебро является основой, палладий придает им коррозионную стойкость. Для улучшения литейных качеств и уменьшения нежелательных свойств серебра (подверженность коррозии) в сплав добавляют золото, получая следующий состав: серебро 55-60%, палладий 27-30%, золото 6-8%, медь 30%, цинк 0,5%.
Применяют сплавы: ПД-250 (палладий 24,5%, серебро 72,1%), ПД-190 (палладий 18,5%, серебро 76,0%), ПД-150 (палладий 14,5%, серебро 84,1%), ПД-140 (палладий 13,5%, серебро 53,9%). Кроме серебра и палладия сплавы содержат небольшие количества легирующих элементов (цинк, кадмий).
Для изготовления коронок применяется серебряно-палладиевый сплав с более низким содержанием палладия (ПД-190), для литых конструкций - с большим (ПД-250).
Паяют серебряно-палладиевые сплавы золотым припоем 750 пробы, отбеливают в 10-15% р-ре соляной кислоты.
ВОПРОС 15
Токсическое, аллергическое и электрохимическое действие металлических сплавов на организм больного
Токсическое действие сплавов обусловлено их составом. Например, припой содержит медь и цинк, окислы которых токсичны. В клинике это проявляется в появлении чувств соленого, кислого, что иногда ошибочно приписывается гальваническим токам, якобы присутствующим в полости рта при наличии протезов. Устранение токсического действия протезов возможно путем применения новых материалов и технологии, не содержащих раздражающих веществ.
Аллергические реакции в виде стоматитов, развивающиеся при пользовании протезами, относятся к контактным из группы реакций замедленного действия. Вещества, вызывающие контактную аллергическую реакцию, по своим свойствам не антигены, так как не имеют белковой природы. Они приобретают эти свойства в результате химического соединения с белками организма. Подобные вещества принято называть гаптенами.
В сплавах гаптенами могут являться окислы металлов.
При соединении разнородных металлов и наличии электролита образуются гальванические пары. В этих парах металл с низким потенциалом является анодом и разрушается, переходя в раствор. Таким образом, более отрицательный электрод в гальваническом элементе растворяется и постепенно разрушается. Это свойство металлов следует учитывать при составлении сплавов, так как структурные составляющие сплава замкнуты через всю массу металла и образуют большое количество микроэлементов. На усиление разности потенциала влияет не только состав, но и структура вещества, состояние поверхности металла, величины рН слюны. Чем выше кислотность слюны, тем больше величина электродвижущей силы гальванического элемента.
Слабые гальванические токи (40-70 мкА) вызывают не только электрохимическую коррозию, но и хроническое раздражение слизистой оболочки полости рта. Это явление нежелательное, поэтому применение металлов и сплавов с различными потенциалами недопустимо. Для защиты от электрохимической коррозии в сплавы вводят метатлы, имеющие способность пассивироваться и передавать это свойство сплаву, или составляют сплавы из металлов с близким потенциалом.
ВОПРОС 16 Принципы выбора материалов для протезирования при
явлениях непереносимости Непереносимостьпластмассовыхпротезов
Этим термином обозначают симптомокомплекс неприятных ощущений, заставляющих больного отказаться от пользования пластмассовым протезом или пользоваться им кратковременно. В это понятие входят клинические симптомы, сопровождающие различную по своему происхождению патологию, связанную с побочным и аллергическим воздействием материала базиса протеза. Наиболее вероятно утверждение, что при непереносимости имеет место сочетание явлений гиперестезии слизистой оболочки протезного ложа различной этиологии с явлениями аллергии в виде контактного стоматита. Дифференциальная диагностика между ними представляет известные трудности, обусловленные общностью проявлений и несовершенством диагностики некоторых аллергических реакций.
Лечение. Повторное протезирование с точным соблюдением режима полимеризации базиса протеза. Если это не приносит успеха, следует выбрать для базиса другой материал, в частности, применить металлический сплав.
Из сплавов лучше всего больными переносятся сплавы золота Материалы для изготовления вкладок и коронок
Материалами для коронок служат сплавы золота 900 пробы, серсбряно-палладиевые и кобальто-хромовые сплавы, нержавеющая сталь, пластмассы, керамика (ситалл, фарфор).
Материалы для изготовления вкладок: кобальто-хромовый сплав, сплавы золота (750-я проба), серебряно-палладиевый сплав, пластмассы, фарфор, композиционные материалы.
Вкладки и коронки могут быть комбинированными.
Подробнее смотри соответствующий вопрос.
ВОПРОС 18
Керамические (фарфор, ситалл} и полимерные облицовочные массы. Показания к их применению
Для достижения высокой эстетичности коронок и мостовидных протезов используются керамические материалы (Фарфор).
Стоматологические фарфоровые массы состоят из полевого шпата, кварца, каолина, флюсов — веществ, понижающих температуру плавления фарфоровой массы и красителей (двуокись титана, окиси марганца, хрома, цинка).
Стоматологический фарфор классифицируется на тугоплавкий (1300-1370°); среднеплавкий (1090-1260°); низкоплавкий (870-1065°).
При изготовлении коронок, вкладок, мостовидных протезов фарфоровый порошок смешивают с дистиллированной водой до консистенции густой кашицы и наносят на матрицу из платиновой фольги или на каркас мос-товидного протеза. Кашицу конденсируют, избыток удаляют фильтровальной бумагой, подсушивают у входного отверстия печи и проводят обжиг в режиме, рекомендуемом заводом-изготовителем.
Фарфоровая масса "Гамма" предназначена для изготовления жакетных коронок при температуре 1100-1 ПО°С.
Масса фарфоровая МК предназначена для облицовки металлических каркасов на основе неблагородных сплавов при изготовлении метаплокерами-
ческих протезов.
Ситалловый материал "Сикор" получают путем кристаллизации расплавленной стекломассы под действием катализаторов (окислы некоторых металлов или их коллоидные частицы). Этот материал имеет высокую прочность и относительно низкую температуру обжига - 860-960°. Обжиг можно вести и на золотой фольге.
Материалы зарубежного производства "Витадур", "Виводент", "Керами-ко" предназначены для изготовления фарфоровых коронок, "Виводент-ИТС", "ВМК-68", "Керамико", "Биодент" - для металлоксрамических протезов.
Пластмассы Синма-74 и Синма-М применяются в ортопедической стоматологии для изготовления коронок и'облицовки несъемных зубных протезов (штамповано-наяных и цельнолитых). Пластмасса Синма-М обеспечивает высокие эстетические свойства зубных протезов благодаря возможности послойного моделирования протеза массами разного цвета.
Несъемные зубные протезы могут быть изготовлены как из пластмассы без соответствующей металлической арматуры, так и с ее применением. Металлические конструкции в комбинированных протезах должны покрываться специальньш лаком (ЭДА-03 или лаком покрывным для зуботсхнических работ), в противном случае металл будет просвечивать через пластмассу и искажать ее цвет, тем самым снижая эстетическую ценность протеза.
РАЗДЕЛ 5 ТЕХНОЛОГИЯ ПРОТЕЗОВ
Вопрос 1 Технология штампованной коронки
Этапыизготовления:
1. Получение моделей зубов и челюстей и фиксация их в артикуляторе
или окклюдаторе;
2. Моделирование коронок зубов;
3. Выделение из моделей гипсовых форм штампа;
4. Получение штампов из легкоплавкого металла;
5. Подбор и подготовка гильз;
6. Штамповка коронок;
7. Шлифовка и полировка искусственной коронки.
Моделированиекоронокзубов
Задачей моделирования является восстановление анатомической формы, которая была нарушена патологическим процессом и препаровкой.
К восстановлению (моделированию) формы зуба на модели приступают после очерчивания линии десневого края (клинической шейки) у каждого зуба химическим карандашом, чтобы точно сохранить ее уровень и рельеф
на гипсовой форме зуба.
Моделирование производят с помощью моделировочного воска путем постепенного наслаивания его на гипсовую культю зуба и последовательного восстановления всего рельефа и формы коронковой части зуба, начиная с вестибулярной, затем язычной (или небной), жевательной и боковых поверхностей. Важно, чтобы воск не доходил до линии шейки на 1,0-1,5 мм, иначе объем шейки зуба будет увеличен и коронка плотно ее не охватит. Смоделированный зуб по объему должен быть меньше восстанавливаемого (равномерно со всех сторон) на толщину металла (0,2-0,3 мм). Бугры при моделировании не должны быть чрезмерно выражены. Между боковыми поверхностями восстанавливаемого зуба и соседними зубами на уровне экватора оставляют просвет на толщину металла.
Моделирование производят только на затвердевшем воске. Восковая модель зуба должна иметь плавные переходы с одной поверхности на другую, без острых выступов и граней.
Моделирование формы зубов при наличии антагонистов должно проводиться обязательно на моделях, залитых в артикулятор или окклюдатор.
Первая порция воска, которую наносят на культю, должна кипеть для хорошего склеивания воска с гипсом.
Последующими порциями расплавленного воска увеличивают объем культи. Пока воск в пластичном состоянии, смыкают окклюдатор и получают отпечаток жевательной поверхности антагонистов. Такой отпечаток необходим для ориентировочного представления о форме жевательной поверхности моделируемого зуба.
Хорошим ориентиром при моделировании служит одноименный зуб противоположной стороны. Изготовлениеметаллическогоштампа
Для получения металлического штампа сначала изготавливают его форму из гипса. Для этого из гипсовой модели плоской пилкой выпиливают фрагмент и срезают излишки гипса так, чтобы ось коронки зуба совпадала с осью основания. Затем на гисовом штампе параллельно линии шейки зуба, отмеченной ранее карандашом на расстоянии 1мм, проводят вторую линию, по этой линии острием шпателя делают углубление, после чего гипс между первой и второй линиями срезается. Пространство между первой и второй линиями обусловливает в последующем ширину и длину коронки в ее поддесневой части. Если шейка отгравирована правильно, то сбоку пространство между первой и второй линиями имеет вид вертикальной линии, продолжающей линию шейки (рис. 196).
После этого гипсовый штамп замачивается в мыльном растворе на 10-15 мин, замешивают гипс, заливают его в специальную рамку. Гипсовые штампы погружают в гипс апроксимальной стороной точно наполовину на расстоянии 1см друг от друга. После затвердевания гипса форму освобождают от рамки, замачивают на 10-15мин в мыльном растворе, а затем для получения второй половины формы заливают ее новой порцией гипса (рис. 19а)
Рис. 19. Этапы изготовления штампованной коронки 1 -линия воска, 2 -линия клинической шейки зуба, 3 -линия края коронки
После затвердения гипса форму раскрывают с помощью поколачивания молоточком по торцовой части. Гипсовые штампы осторожно удаляют, обе половины формы соединяют и заливают легкоплавкий металл в имеющиеся в форме отверстия ложа штампов.
После охлаждения металла форму раскрывают и вынимают отлитые металлические штампы.
Для каждого зуба надо отливать два металлических штампа: один для предварительной штамповки, другой - для окончательной.
После обработки металлический штамп готов для изготовления по нему металлической коронки.
Подбориподготовкакштамповке
Правильно подобранная гильза и трудом натягивается на металлический штамп. Если гильза широкая, можно сузить ее до нужного размера с помо-Щью аппарата "Самсон". Перед этим гильзу отжигают.
Надев гильзу на штамп, вколачивают его молотком в гильзу, помещенную в образованное углубление свинцовой пластинки, до тех пор, пока на Дне гильзы не появятся первые отпечатки - формы поверхности зуба.
Как только окклюзионная поверхность будет отштампована, гильзу сни-мают со штампа. Затем гильзу снова отжигают. Золотую коронку перед отжи--------„„,„„.,. „ л.п-^0% пастворе соляной или азотной
мают со штампа. Затем гильзу снова отжшакн. ачл^^. ..-,.___.,
гом обязательно нужно прокипятить в 40-50% растворе соляной или азотной . „„.^„^„„о т»гкг»ппяпкпго металла.
гом осязательна пуяу,,и ..,,„..............
кислоты для удаления остатков легкоплавкого металла.
Ответы на экзаменационные вопросы
I |
|
|