Главная страница

Барт по ортопедии. Барт по ортобедиской стоматологии к экзамену 4 курс. Вопрос 1 Предмет ортопедической стоматологии, ее цели и задачи. Разделы специальности


Скачать 0.62 Mb.
НазваниеВопрос 1 Предмет ортопедической стоматологии, ее цели и задачи. Разделы специальности
АнкорБарт по ортопедии
Дата23.05.2021
Размер0.62 Mb.
Формат файлаdocx
Имя файлаБарт по ортобедиской стоматологии к экзамену 4 курс.docx
ТипДокументы
#208570
страница6 из 27
1   2   3   4   5   6   7   8   9   ...   27


Во времяполученияоттискаматериалпроявляетследующиесвойства: Положительные

Легко приготавливается. Хорошо соединяется с ложкой. Пластичен.

Точно отражает рельеф тканей протезного ложа. Не дает усадки. Легко отделяется от модели. Отрицательные

1- После структурирования становится твердым и при выведении воз­можна деформация.

2. Очень короткое время структурирования.

Показания. Оттискной материал применяется для получения функциональ­ных оттисков с беззубых челюстей. Может применяться для временной фик­сации искусственных коронок.

К этой группе материалов относятся Дентол, Репин, Кавекс и

1.

2. 3. 4. 5. 6.

Оттискные материалы, применяемые для получения

функциональных оттисков

Функциональный оттиск снимают индивидуальной ложкой и с помощью специальных функциональных проб. Применяют при протезировании боль­ных полными и частичными съемными протезами в случае, когда следует уточнить соотношения между краем протеза и тканями, расположенными на границе протезного ложа.

Классификацияфункциональныхоттисков

{. По способу оформления краев оттиска:

• С помощью пассивных, жевательных или других движений;

• С помощью функциональных проб

II. По степени отжатая слизистой оболочки.

Оттиск компрессионный. Функциональный оттиск, при котором сдавлива­ются сосудистые поля (буферные зоны) протезного ложа. Компрессия достига­ется путем жевательного давления или произвольного давления рукой врача. В первом случае на пластмассовой ложке укрепляют прикусные валики и перед снятием оттиска определяют центральное соотношение челюстей.

Оттиск разгружающий. Функциональный оттиск, снимаемый при мини­мальном давлении. Термин неудачен, так как все оттиски снимаются с при­менением большего или меньшего давления.

Материалыдляснятияфункциональныхоттисков:

могут применяться различные оттискные массы — дентол, репин (цинкок-сидэвгенолыше), дентофоль (термопластическая ) и др. Предпочтительнее использовать силиконовые массы — сиэласт-69, дентафлекс и др.

Подробнее см. в соответствующих разделах.

ВОПРОС 6

Полимеры, применяемые в ортопедической стоматологии, их состав, свойства и показания к применению, внутренняя

и наружная пластификация полимеров.

Пластические массы - материалы, основу которых составляют полиме­ры, находящиеся в период формирования изделий в вязкотекучем или высо­коэластичном, а при эксплуатации - в стеклообразном или кристалличес­ком состоянии. Широкое применение их обусловлено следующими основ­ными свойствами: ' ••....

1. биоинертностью,

2. химической стойкостью,

3. механической прочностью, '••'

4. высокой технологичностью, : : • •' '• •

5. эстетическими свойствами.

Пластмассы делят на две основные группы — термопласты (термоплас­тические) и реактопласты (термореактивные). Термопластические матери­алы при повторном нагревании размягчаются — они обратимые, а терморе­активные — необратимые.

В состав пластмасс кроме полимеров входят добавки: Наполнители - влияют на прочность, твердость, теплопроводность, усад­ку, стойкость к действию агрессивных сред, липкость и др. Наполнители делятся по происхождению на минеральные и органические, по структуре на порошкообразные и волокнистые. При наличии химической связи напол­нителя и полимера первый называют активным. Если такой связи не просле­живается наполнитель называют инертным. Наилучший эффект получается при применении активных наполнителей.

Пластификаторы - применяют для повышения пластичности материала в процессе переработки и эластичности готового полимера. Кроме того, они об­легчают смешивание в полимере сыпучих ингредиентов, рейдируют клейкость полимерной композиции, снижают их вязкость и температуру формования.

Стабилизаторы - применяют для защиты полимеров от старения. Они сни­жают скорость химических процессов, приводящих к старению полимера.

Красители — применяют для получения окрашенных материалов. Базисные материалы окрашивают под цвет слизистой оболочки. Искусственные зубы дол­жны соответствовать цвету зубов больного. Эктопротезы должны соответство­вать цвету кожных покровов. Краситель должен обладать высокой стойкостью.

Сшивающие агенты — вводят в полимеры с целью создания поперечных связей между макромолекулами полимера.

Антимикробные агенты. Используются в очень малых концентрациях.

Показаниякприменению

1 . Для изготовления базисов съемных пластиночных протезов, седловидных частей дуговых протезов — базисные материалы (этакрил, бакрил, фторакс).

2. Для исправления (перебазирования) протезов, их починки, изготов­ления временных протезов, шин, моделей, индивидуальных ложек (протак-рил, протакрил-М, редонт).

3 . Для изготовления челюстно-лицевых протезов, обтураторов, пелотов, мягких амортизирующих подкладок под базисы протезов (эладент, ортосил-М).

4. Для изготовления искусственных зубов.

Внутренняяинаружнаяпластификацияполимеров

Пластификаторы применяют для повышения пластичности материала в процессе переработки и эластичности готового полимера. Кроме того, они облегчают сшивание в полимере сыпучих ингредиентов, регулируют их вязкость и температуру формования.

Внутренняя пластификация происходит за счет введения в макромолеку­лу метакрилата.

Внешняя пластификация обеспечивается введением в смеси перед поли­меризацией дибутилорталата в количестве до 1%.

См. также вопрос 1 раздел 4.

ВОПРОС 7 Базисные материалы, их характеристика. Эластичные

пластмассы, показания к применению.

Материалы, применяемые для изготовления базисов съемных пластиночных протезов, серповидных частей дуговых протезов, называются базисными мате­риалами. В настоящее время в стоматологии в качества базисных материалов широкое применение получили синтетические пластические массы.

Пластмассы для базисов протезов выпускают, в основном, в виде комп­лекта: порошок (полимер) - жидкость (мономер). При смешивании порошка с жидкостью образуется формовочная масса, которая в зависимости от со­става порошка и жидкости твердеет при нагревании или самопроизвольно. Первый тип материалов - пластмассы горячего отверждения, второй - само­твердеющие пластмассы.

Пластмассы типа порошок-жидкость перерабатываются в изделия мето­дами ПрСССОЬсШИй И ЛЙТьм.

Жидкость (мономер) - метиловый эфир метакриловой кислоты Ускоряют полимеризацию мономера тепло, УФ-лучи. Замедляет полиме­ризацию кислород воздуха. Полимеризация мономера происходит с образо­ванием прозрачного стекловидного тела и сопровождается усадкой, дости­гающей 20%.

Полимер (порошок) — полиметилметакрилат.

Базисныепластмассыгорячейполимеризации

Этакрил (АКР-15) - тройной сополимер метилметакрилата, этилметакри-лата и метилакрилата. Полимер пластифицируется двумя способами: 1) внут­ренняя пластификация за счет введения в макромолекулу метакрилата и 2) наружная - добавление дибутилфталата (до 1%). Красящие пигменты и дву­окись титана делают порошок полимера непрозрачным и придают ему розо­вую окраску. Жидкость содержит ингибитор гидрохинон (0,005%) и пласти­фикатор - дибутилфталат (1%).

Акрел - сополимер со "сшитыми" полимерными цепями, образованными с помощью сшивагента (метилолметакриламида), введенного в мономер. Препарат состоит из порошка-полиметилметакрилата, пластифицирован­ного дибутилфталатом (1-3%), и жидкости - метилметакрилата, содержа­щей сшивагент и ингибитор гидрохинон. Замутнитель - двуокись титата и окись цинка (1,3%).

Фторакс - фторсодержащий акриловый сополимер, обладает повышен­ной прочностью, химической стойкостью, пластмасса полупрозрачна.

Акронил используется для изготовления челюстнолицевых и ортодон-тических аппаратов, съемных шин и т. д. Порошок - привитый к поливи-иилэтилалю сополимер метилметакрилата. Жидкость - метилметакрилат, содержащий сшивагент - диметакрилат триэтиленгликоля. В жидкость введены ингибитор и антистаритель. По прочности акронил близок к фто-раксу, обладает меньшей водопоглощаемостью, хорошими технологи­ческими показателями.

Эластичныепластмассы

Эластичные пластмассы применяются в качестве мягких амортизирую­щих прокладок для базисов съемных протезов, при изготовлении челюстно­лицевых протезов, обтураторов, протезов лица, боксерских шин.

Они должны быть безвредными для организма, прочно соединяться с ба­зисом протеза, сохранять эластические свойства и постоянство объема при пользовании протезом, иметь хорошую смачиваемость и показатель упру­гости, близкий к показателю упругости слизистой оболочки протезного ложа.

Эластические свойства большинства пластмасс обусловлены процессом пластификации, возникающим во время полимеризации.

Эладент- пластифицированный сополимер акриловых мономеров. При­меняется для подкладок под базисы съемных протезов, окрашен в розовый цвет. Комплект состоит из порошка и жидкости. Порошок - сополимер ме-такрилового и метилметакрнлового эфиров. Жидкость - смесь этих эфиров с добавлением пластификатора.

Ортоксил-М - искусственный силоксановый каучук холодной вулкани­зации, полученный на основе силоксановой смолы. Применяется для мягких подкладок под базисы протезов. Выпускается в виде пасты, содержащейся в тубе и жидкости - катализатора. Паста с добавленным в нее катализатором нано­сится на протез, который затем вводится в полость рта и оформляется мягкая подкладка. Схватывание происходит в течение 40-50 мин.

ВОПРОС 8

Быстротвердеющие пластмассы, их состав, особенности применения, основные недостатки

Акриловые пластмассы приобретают свойства полимеризоваться без внешнего нагревания, если в их состав вводится активатор, способный рас­щеплять перекись бензоила на радикалы при температуре окружающей сре­ды. Такие пластмассы называют самотвердеющими.

Протакрил состоит из порошка (полиметилметакрилат с добавлением 1,5% перекиси бензоила и 2% дисульфанамина) и жидкости (метилметак­рилат с диметилпаратолуидином - 0,1-0,2%). Дисульфанамин и диметил-паратолуидин являются активаторами. Применяется для изготовления вре­менных шин и аппаратов, для исправления и починок съемных протезов. Тесто полимеризуется через 15-20 мин, но процесс может быть ускорен нагреванием до 45°С.

Редонт - сополимер метилового и этилового эфиров метакриловой кис­лоты. Порошок - сополимер метилметакрилата и этилметакрилата (96,1%), перекись бензоила (1,5%), краситель (0,4%). Жидкость - метилметакрилат (98,8%), активатор - димстилпаратолуидин (1,2%), ингибитор-гидрохинон. Применяется для исправления и починок зубных протезов, аппаратов, из­готовленных из пластмасс акриловой группы методом холодного отверде­ния. Полимеризация под давлением в 1,5-2 атм во влажной среде дает бо­лее прочную пластмассу с меньшим количеством пор и в то же время более эластичную.

Стадонт - самотвердеющая пластмасса, аналогичная по составу редон-ту. Используется для изготовления временных назубных шин при лечении пародонтоза (так как обладает повышенной адгезивностью к твердым тка­ням зубов) или переломов челюстей.

Карбопласт - самотвердеющая акриловая пластмасса, из которой од­номоментно получают индивидуальные слепочные ложки. Порошок - по­лиметилметакрилат, пластифицированный дибутилфталатом. Жидкость - метилметакрилат с добавкой активатора - диметилаланина (3%). Поро­шок содержит инициатор (перекись бензоила), а жидкость - ингибитор (гидрохинон). В пластмассу в большом количестве (до 50%) вводится наполнитель - мел.

Особенности полимеризации самотвердеющих пластмасс:

1. По окончании полимеризации в пластмассе остается до 5% мономера, что в 10 раз больше, чем при полимеризации под тепловым воздействием.

2. Образующиеся полимерные цепи короче, чем при тепловой полимеризации.

3. При полимеризации выделяется большое количество тепла, что может вызвать образование в массе раковин (для предупреждения этого пластмас­су следует опустить в холодную воду).

4. Некоторые активаторы полимеризации являются химически нестойки­ми веществами (диметилпаратолуидин, паратолуолсульфиновая кислота), в связи с чем через некоторое время пластмасса изменяет цвет.

Токсическое и аллергическое действие пластмасс на организм больного. Акриловые стоматиты

Токсические стоматиты. Токсические стоматиты бывают двух видов: хими­ческие и бактериальные. Первые, чаще всего, называются акриловыми, так как причиной их возникновения является избыток мономера в базисе из акрилата. По своей химической природе мономер является метиловым эфиром метакриловой кислоты. А все эфиры, как известно, обладают раздражающим действием на слизистую оболочку полости рта, а в больших концентрациях мономер является протоплазматическим ядом. Кроме местного, мономер может оказывать резорб-тивное действие на организм человека. Это возможно при высокой концентра­ции паров мономера в рабочих помещениях, когда нарушается техника безопас­ности. Наибольший клинический интерес представляют собой акриловые стома­титы, наблюдаемые у лиц, пользующихся пластмассовыми протезами. Их проис­хождение связано с избытком мономера в базисе, пластмассовых облицовках мостовидных протезов, при нарушении технологии и, в частности, режима поли­меризации. Появляющийся при этом излишек мономера вызывает стоматит. Сле­дует иметь в виду, что свободный мономер может появиться и при старении пла­стмассы, когда имеет место ее деполимеризация.

Ведущим симптомом в клинике токсического акрилового стоматита яв­ляется разлитая гиперемия и отек слизистой оболочки протезного ложа. Чаще воспаление наблюдается на твердом небе и реже на альвеолярной части нижней беззубой челюсти. Область воспаления, как правило, совпадает с границами протеза. Больные при этом жалуются на чувство жжения слизис­той оболочки под базисом протеза, в языке, губах. Дифференциальная диаг­ностика проводится с контактной аллергией, но она весьма затруднительна благодаря схожести клинической картины. Профилактика токсических сто­матитов заключается в соблюдении режима полимеризации.

Аллергические реакции в виде стоматитов, развивающиеся при пользо­вании протезами, относятся к контактным из группы реакций замедленного действия. Вещества, вызывающие контактную аллергическую реакцию, по своим свойствам не антигены, так как не имеют белковой природы. Они приобретают эти свойства в результате химического соединения с белками организма. Подобные вещества принято называть гаптенами.

В состав пластмасс входят следующие гаптены: мономер, гидрохинон, перекись бензоила, окись цинка и красители.

Клиническая картина при аллергии, обусловленной базисными материала­ми, настолько многообразна, что часто ее трудно отличить от клинической картины других реактивных изменений, имеющих иную причину и другой па­тогенез. В общем плане можно было бы говорить, во-первых, о контактной аллергии, которая проявляется воспалением слизистой оболочки протезного ложа, т.е. ткани, которая проходит в соприкосновение с материалом базиса и, во-вторых, об аллергических реакциях со стороны других систем организма. Аллергическое воспаление, протекающее по типу контактного стоматита, проявляется на слизистой оболочке языка, губ, щек, альвеолярных частей и особенно на небе. Оно резко ограничено областью соприкосновения базиса протеза с тканями. Слизистая оболочка здесь ярко-красного цвета, блестящая. Однако аллергическая реакция может наблюдаться не только на участке кон­такта с антигеном. Встречаются больные с экземами, глосситами, контактны­ми стоматитами, нарушениями или извращением вкуса, отеком губ, острыми дерматитами лица и рук, бронхиальной астмой, паротитами и другими аллер­гическими проявлениями, обусловленным к акриловыми протезами.

Методика приготовления пластмассы к полимеризации. Значение соотношения компонентов "мономер-полимер"

Пластмассыгорячейполимеризации

Свойства полимер-мономерной смеси пластмасс горячей полимеризации зависят от размера и однородности размеров гранул. Оптимальный размер гранул обеспечивает высокие физико-механические свойства полимера, а также необходимую растворимость в мономере гомо- и сополимеров.

Усадка мономера в процессе полимеризации равна 20-21%. Усадка поли­мер-мономерной смеси (системы) меньше и зависит от соотношения мономер-полимер. Чем меньше это соотношение, тем меньше усадка. При соотношении 1:3 объемная усадка в 3,5 раза меньше, чем для индивидуального мономера и равна 5,8-6,0%. Таким образом, соотношение между мономером и полимером при изготовлении формовочной массы должно быть оптимальным.

В практике обычно берут объемное соотношение мономера к полимеру 1:3 или весовое 1:2.

Это позволяет получить усадку полимеризата в пределах 6-7%. Однако это очень высокая усадка, которая не позволит получить точные протезы. Однако усадка уменьшается и за счет других факторов до 0,5%.

Формовочную массу готовят в сосуде с крышкой. Для предупреждения образования воздушных пузырьков рекомендуется порошок осторожно на­сыпать в отмеренное количество жидкости. Для равномерного набухания и равномерной окраски массу сразу же перемешивают. Во время набухания массу следует еще 1-2 раза перемешать. Во избежание испарения мономера сосуд следует держать закрытым крышкой. Необходимо помнить, что коли­чество мономера, взятого для приготовления формовочной массы, оказыва­ет влияние на цвет и качество изделия. Избыток мономера делает изделие более хрупким, увеличивает усадку и ослабляет окраску.

В первый момент смешивания порошка и мономера образуется смесь, на­поминающая влажный песок. Это первая стадия полимеризации полимер-мономерной смеси. Через некоторое время, длительность которого зависит от размеров гранул, температуры, наличия пластификатора и др. смесь пре­вращается в липкую массу. На этой второй стадии за шпателем тянутся от массы нити, она пристает к пальцам, стенкам сосуда. Эта стадия липкая или тянущихся нитей. Через некоторое время липкость массы теряется, процесс переходит в третью стадию - тестообразную Образовавшаяся тестообраз­ная масса легко формуется. Через некоторое время масса становится рези-ноподобной (четвертая стадия) и, наконец твердеет (пятая стадия) . Формо­вочную массу следует помещать в прессформу в тестообразном состоянии. Скорость набухания можно регулировать изменением температуры сис­темы полимер-мономер. Поместив смесь в холодильник, можно удлинить набухание на несколько часов. Только при этом следует предохранить смесь °т попадания в нее паров влаги.

Пластмассыхолодногоотверждения (самотвердеющие)

При смешивании порошка с жидкостью активатор расщепляет перекись енз°ила на радикалы при обычной температуре окружающей среды, в ре­зультате чего происходит инициирование реакции полимеризации. В каче­стве активаторов используют третичные амины, меркаптаны, производные сУльфиновой кислоты и др.

После смешивания компонентов (порошка и жидкости) полимеризация протекает в течение 20-30 минут. Ускорить отвердевание можно, поместив форму в воду при температуре 37° С. При открытой полимеризации пластмассы (например, клиничес-кяя перебазировка протсЗа) изделие следует помещать под источник внешнего тепла (например, электролампа) при температуре не выше 55"С.

Приготовляя формовочную массу из самотвердеющей пластмассы, сле­дует помнить о правильном соотношении мономера и полимера. При увели­чении количества мономера увеличивается усадка изделия, удлиняется про­цесс полимеризации, повышается содержание остаточного мономера.

В зависимости от вида работы формовочные массы используются на раз­личных стадиях набухания.

1 стадия - песочная. Она появляется сразу после смешивания порошка с жидкостью и в зависимости от температуры окружающей среды может продол­жаться от 30 сек. до 5 мин. В песочной стадии смесь не пригодна к пользованию.

2 стадия - вязкая, тянущихся нитей. Начальный период этой стадии ха­рактеризуется появлением тянущихся нитей, липкостью массы, высокой пла­стичностью и текучестью. В начале 2 стадии набухания формовочную мас­су используют для работ, требующих адгезии. Нанесенная на базис протеза формовочная масса в этой стадии после отверждения образует прочное со­единение с основной пластмассой.

3 стадия - тестообразная, формовочная масса в этой стадии набухания характеризуется потерей липкости, хорошей пластичностью и меньшей те­кучестью, чем во второй стадии. В таком состоянии формовочную массу удобно формировать на гипсовых моделях, изготовляя защитные небные пластинки, замещающие, формирующие и обтурирующие протезы, индиви­дуальные ложки, ортодонтические аппараты и др. стоматологические кон­струкции. Массу можно использовать также для перебазирования протеза, особенно когда необходимо получить отпечаток рельефа протезного ложа при возможности создания значительного жевательного давления.

4 стадия - резиноподобная. На этой стадии формовочная масса сохраняет приданную ей форму даже при незначительном кратковременном механи­ческом воздействии на нее. Протез при перебазировании удаляют из полос­ти рта тогда, когда формовочная масса находится в резиноподобном состо­янии. После окончательного затвердевания пластмассы протез следует тща­тельно припасовать, используя копировальную бумагу.

ВОПРОС 11

Методы и режим полимеризации пластмассы. Последствия его нарушений. Виды пористости пластмасс

Основные методы получения пластмасс - полимеризация и поликонденса­ция. При полимеризации молекулы мономеров связываются в полимерные цепи без высвобождения побочных продуктов реакции (вода, спирт и др.). При поликонденсации происходит образование некоторых побочных, не свя­занных с полимером веществ.

Полимеризацияимееттристадии.

1. Активация молекул мономера (разрыв двойных связей, распад инициа­тора па радикалы, имеющие свободные валентности, по месту которых и происходит рост полимерных цепей).

2. Рост полимерной цепи из активных центров (на концах цепей постоян­но присутствуют свободные радикалы, обеспечивающие рост полимерной цепи). При соединении мономолекул с одной двойной связью образуются ли­нейные полимеры. Если мономеры имеют больше одной двойной связи или под воздействием активных веществ образуются поперечные связи, полимер приобретает "сшитый" вид.

3. Окончание процесса полимеризации, обрыв полимерной цепи при пре­кращении действия факторов, вызывающих полимеризацию.

Полимеры, полученные при полимеризации различных мономеров, обла­дающих несходными свойствами, носят название сополимеров.

На основании своих исследований М. М. Гернер с соавт. рекомендует сле­дующий режим полимеризации формовочной массы. Вода, в которую помеще­на гипсовая форма, нагревается от комнатной температуры до 65°С в течение 30 минут. Такая температура обеспечивает полимеризацию формовочной мас­сы под воздействием теплоты реакции. В результате саморазогрева температу­ра массы достигает примерно 100°С, что обеспечивает хорошую конверсию мономера. Вода, температура которой поддерживается на уровне 60-65°С, пре­дотвращает снижение температуры пластмассы. После 60 минут выдержки воду подогревают до 100°С в течение 30 минут и выдерживают 1-1,5 часа. По завер­шении полимеризации форму медленно охлаждают на воздухе.

После полимеризации полимеризат всегда содержит остаточный мономер. Количество его зависит от природы инициатора, температуры, времени полиме­ризации и др. Выдержка гипсовой формы в кипящей воде способствует не только повышению молекулярной массы, но и уменьшению содержанию остаточного мономера. Часть оставшегося мономера связана с макромолекулами (связанный мономер), другая часть находится в свободном состоянии (свободный мономер). Свободный мономер мигрирует к поверхности изделия и растворяется в средах, контактирующих с зубным протезом. Поскольку экстрагируемые жидкими сре­дами из пластмассы остаточные продукты могут оказывать вредное общее и ме­стное воздействие на организм пациента, необходимо добиваться минимального содержания остаточного мономера в пластмассах. Нагрев до 100°С резко сокра­щает количество остаточного мономера, однако добиться полного его отсут­ствия практически невозможно. В пластмассах горячей полимеризации его со­держится около 0,5%, а в самоотвердеющих - 3-5%. Остаточный мономер оказы­вает существенное влияние на прочностные и другие свойства полимера. Содер­жание остаточного мономера в пластмассах горячей полимеризации более 3% резко снижает их прочность. Пластмассы быстро стареют, у них наблюдается повышенное водо-масло-спиртопоглощение.

Различаютследующиевидыпористости:

1. Газовая. Она возникает в результате испарения мономера внутри полиме­ризующейся формовочной массы. Реакция полимеризации является экзотерми­ческой. Выделяющаяся теплота полимеризации не может быть быстро отведена от полимеризующейся массы, так как она и гипс являются плохими проводни­ками тепла. Температура кипения мономера 100,3°С, а температура, которая развивается в массе за счет экзотермичности процесса, может составлять !20°С и более. В этих условиях мономер закипает и его пары, не имея выхода наружу, вызывают пористую структуру материала. Газовая пористость проявляется в глубине материала и тем значительнее, чем больше масса, поэтому в протезах нижней челюсти она наблюдается чаще. Газовую пористость можно избежать, если соблюдать правильный температурный режим, т. с. постепенный нагрев полимеризующейся массы от комнатной температуры.

2. Пористость сжатия. Она возникает в результате уменьшения объема полимеризующейся тестообразной массы. К пористости сжатия приводит недостаточное давление (вследствие чего остаются пустоты) или недостаток фор­мовочной массы. Пористость сжатия возникает всегда в тех местах, где нет дос-

таточного давления

•} Т .-*» А

г----Л*.,эуСаЬа ^|0| ьИд иОрИС|ОСТИ МОЖНО рйССМа!

г-^ --"Г-------------•• .'*"."Ч*

|^1л\*\^ть* I[-Ч-ЛЭЧ Ю

как плохое структурирование материала, она наблюдается при недостатке мономера. Мономер летуч и быстро испаряется с открытой поверхности те­стообразной формовочной массы, в результате чего при прессовании не по­лучается однородной гомогенной массы. Гранулярная пористость может возникнуть при открывании кюветы для контроля количества внесенной в форму массы. Она наблюдается обычно в тонких участках протеза, так как на этих участках испарившийся мономер не может восполниться за счет его миграции изнутри к поверхности изделия.

ВОПРОС 12

Внутренние напряжения в пластмассе. Предупреждение их

возникновения

Остаточные напряжения. В пластмассовых изделиях, независимо от спо­соба их приготовления, всегда имеются значительные остаточные напряже­ния. Внутренние напряжения в акриловых протезах вызывают их преждев­ременное растрескивание и коробление. Протез представляет собой арми­рованное изделие, в котором зубы, кламмеры, дуги и др. детали являются арматурой. Температурные изменения размеров материалов арматуры мень­ше, чем пластмассы в 10-20 раз.

В местах монтажа арматуры полимер растягивается при охлгшдении и возникают местные напряжения. Большее напряжение возникает около фар­форовых зубов, чем пластмассовых. Таким образом, наличие арматуры по­вышает вероятность появления трещин.

К внутренним напряжениям приводит различная толщина отдельных час­тей изделия. Толстые части дают большую усадку по абсолютной величине, тонкие - меньшую, в связи с чем в местах перехода появляются напряжения. Остаточные напряжения возникают в процессе изготовления полимера. При нагревании кюветы вначале повышается температура наружного слоя пластмассы и затвердевание начинается в поверхностных слоях, сопровож­даясь усадкой. Внутренние слои вначале имеют более низкую температуру. Опережение затвердевания наружного слоя в пластмассах горячей полиме­ризации приводит к возникновению в нем внутренних напряжений растяже­ния. В дальнейшем затвердевание внутренних слоев вызывает уменьшение их объема и они оказываются под воздействием растягивающего напряже­ния, т.к. к этому времени наружные слои приобретают жесткость.

Поскольку напряжения обязательно возникают в процессе изготовления протеза, их следует снимать. Для этого протез следует обработать при опре­деленном температурно-временном режиме в различных средах. При этом улучшаются механические свойства изделия, стабилизируются геометри­ческие размеры и увеличивается срок эксплуатации. В качестве сред тепло­носителей используют воздух и жидкости. Из различных видов термической обработки наиболее эффективным является отжиг, который надо проводить при такой температуре, когда изделие еще не деформируется.

М. М. Гернер и М. А. Нападов предлагают следующую термообработку протезов. Отжиг в термошкафу, нагревая изделие со скоростью 0,7-1,5°С в минуту до 80±3°С. После 3-4 часовой выдержке при этой температуре изде­лие медленно охлаждают до 30-40 С.

Растрескивание. Одним из самых распространенных видов разрушения пластмасс является возникновение трещин на поверхности материала при одновременном действии напряжения и окружающей среды.

При растрескивании, в зависимости от величины и характера распреде­ления напряжений, возникает одна магистральная трсгцнпа илм сстк?» мел ких трещин. При воздействии больших напряжений образуется обычно одна магистральная трещина, при малых напряжениях возникает множество тре­щин. Растрескивание проявляется особенно быстро при воздействии орга­нических растворителей (этиловый спирт, ацетон, бензол и др.).

Внутренние напряжения через некоторое время могут привести к трещинам на поверхности базиса. Например, можно часто видеть трещины, радиально расходящиеся в пластмассовом базисе от шеек фарфоровых зубов. Если про­тез, которым пользуется больной, часто высыхает при извлечении изо рта и вновь увлажняется, то со временем могут возникнуть трещины в результате чередующегося сжатия (при высыхании) и расширения (при поглощении воды). Базисные материалы с увеличенной водопоглащаемостыо более склонны к ра­стрескиванию. Если при полимеризации формовочная масса контактировала с водой, то получается полимер с повышенной водопоглощаемостью.

ВОПРОС 13

Характеристика металлических сплавов, применяемых в

ортопедической стоматологии. Нержавеющая сталь,

кобальто-хромовый сплав (КХС). Сплавы титана, их

свойства, показания к применению. Изменение механических свойств нержавеющей стали после холодной

деформации.

Чистые металлы в ортопедической стоматологии не применяются, т. к. для зуботехнических целей необходимы сплавы, обладающие разнообраз­ными свойствами.

Сплавы, применяемые в ортопедической стоматологии, должны иметь оп­ределенные свойства, которые можно разделить па две группы.

К первой относятся общемедицинские свойства. Сплавы не должны вы­зывать в полости рта пациента токсического и аллергического действия.

Ко второй относятся технологические свойства.

1. Высокая антикоррозийная стойкость.

2. Ковкость, текучесть при литье.

3. Прочность, твердость.

4. Малая усадка при литье, невысокая температура плавления.

5. Хорошая механическая и электролитическая обработка и полировка.

6. Возможность паяния.

Все эти требования зависят от количества компонентов (металлов), вхо­дящих в сплав. Каждый из них привносит свое качество. Так, например, хром (17—19%) придает сплаву коррозийную стойкость, никель (8—10%) — пластичность, усиливает вязкость, делает его ковким.

Для улучшения литейных свойств добавляют титан (около 1%), кобальт придает стали высокие механические свойства, молибден — мелкокрис­таллическую структуру, что так же усиливает прочность. Марганец пони­жает температуру плавления, способствует удалению газов и сернистых соединений. Нержавеющаясталь

Наиболее распространенной для изготовления штампованных коро­нок и паяных мостовидных протезов является нержавеющая сталь марки IX 18Н9Т: (72% железа, 18% хрома, 9% никеля, 0,1% углерода и 1% титана). Хром обеспечивает коррозионную устойчивость, никель прида­ет сплаву пластичность, делает его ковким, облегчает обработку давле­нием. При термической обработке сплава при температуре 450-850°С могут образоваться химические соединения хрома с углеродом - карбиды хрома, молекулы которых размещаются по границам кристаллических зерен. Это приводит к уменьшению количества свободного хрома в этих зонах, в связи с чем увеличивается возможность возникновения межкри­сталлической коррозии.

Для предупреждения образования карбидов хрома в состав стали вводят титан, вступающий в связь с углеродом. При этом образуются карбиды ти­тана, а образование карбидов хрома прекращается, что предотвращает меж­кристаллическую коррозию стали.

Для улучшения жидкотекучести и жаростойкости стали вводится 2,5% кремния (сплав ЭИ-95).

Механические свойства нержавеющих сталей резко меняются после хо­лодной деформации и наклепа, в результате чего образуются карбиды ме­таллов, в основном хрома.

Для восстановления свойств стали ее необходимо нагреть до 1100° и ох­ладить (отпустить). Эта процедура восстановит пластичность сплава, по­высит его антикоррозийные свойства. Кобальтохромоникелевый сплав (КХС)

Кобальтохромоникелевый сплав применяется для литья конструкций вы­сокой точности (каркасы литых мостовидных протезов, дуговых протезов и литых базисов для съемных протезов). Этот сплав имеет небольшую усадку и обладает хорошими механическими свойствами.

Сплав КХС (Кобальтохромоникелевый сплав) с температурой плавле­ния 1460°С содержит: кобальта 67%, хрома 26%, никеля 6%, молибдена и марганца по 0,5%. Кобальт имеет высокие механические свойства, хром вводится для придания твердости и антикоррозийных свойств, молибден усиливает прочностные свойства, никель повышает вязкость сплава, мар­ганец улучшает жидкотекучесть, понижает температуру плавления. При­месь железа допускается не более 0,5%, она увеличивает усадку при ли­тье и ухудшает физико-химические свойства сплава.

Сплавытитана

Титан плавится при температуре 1690 "С, имеет плотность 4,5 г/см:\ В настоящее время получен титан ВТ 1-0 и ВТ 1-00 (соответственно 99,55 и 99,48% чистоты). Примерно 0,5% составляют примеси железа, азота, водо­рода, которые ухудшают свойства титана. Усадка титановых сплавов при литье составляет 2-3%. Сплавы титана имеют биологическую инертность за счет защитной пленки из оксида титана, высокую удельную прочность, хо­рошую химическую стойкость ко многим агрессивным средам.

Сплавы титана применяются для изготовления имплантатов; для изготов­ления зубных протезов (Пермь, Г.И.Рогожников)

На базе новых металлургических технологий разработаны сплавы нике-лида титана (нитинола), имеющие хорошую коррозионную стойкость, плас­тичность, свойство "памяти". Проволока из нитинола применяется в орто-донтии. Сплавы благородных металлов (золото, золото-платина,

серебро-палладий). Их состав, свойства, показания к

применению. Пробирные системы (метрическая,

золотниковая, каратная)

Сплавы золота различают по процентному содержанию золота. Чис­тое золото обозначают 1000-ой пробой. Помимо метрической пробы в России существовала до 1927 г. золотниковая. В основу ее положена весовая единица „фунт", состоящая из 96 золотников, химически чис­тое золото обозначалось 96 пробой. Одна золотниковая проба равна 1000 : 96 = 10,4 метрической пробы. Следовательно, для перевода зо­лотниковой пробы в метрическую необходимо умножить показатель зо­лотниковой пробы на коэффициент 10,4. Помимо русской и метричес­кой системы существует каратная система. Карат является единицей веса - равен 0,12 г. По каратной системе исчисляется ценность алмазов и других камней. Чистое золото равно 24 единиц-карат. Для перевода каратной системы в метрическую следует показатель каратной систе­мы умножить на 41, 66.

Сплав золота 900-й пробы содержит 90% золота, 4% серебра, 6% меди, хорошо поддается штамповке, имеет невысокую твердость и легко подда­ется стиранию. Применяется он для изготовления штампованных коронок и паяных мостовидных протезов.

Сплав золота 750-й пробы содержит 75% золота, 8% серебра, 7,8% меди, 9% платины. Платина и медь делают сплав более твердым, упругим. Сплав имеет небольшую усадку при литье и применяется для изготовления карка­сов дуговых и шинирующих протезов, кламмеров, штифтов, вкладок, крам-поиов и проволоки.

Если в сплав 750-й пробы добавить 5-10% кадмия, то температура плав­ления снижается до 800°С, и сплав можно использовать как припой.

В последние годы широкое распространение получили сплавы на основе палладия и серебра. Эти сплавы технологичны, с высокой механической прочностью и высокими антикоррозийными свойствами. К недостаткам сле­дует отнести серебристый цвет, который может темнеть из-за окисления се­ребра, а также повышающаяся стоимость серебра из-за ограниченности за­пасов на земле.

В большинстве таких сплавов серебро является основой, палладий при­дает им коррозионную стойкость. Для улучшения литейных качеств и умень­шения нежелательных свойств серебра (подверженность коррозии) в сплав добавляют золото, получая следующий состав: серебро 55-60%, палладий 27-30%, золото 6-8%, медь 30%, цинк 0,5%.

Применяют сплавы: ПД-250 (палладий 24,5%, серебро 72,1%), ПД-190 (палладий 18,5%, серебро 76,0%), ПД-150 (палладий 14,5%, серебро 84,1%), ПД-140 (палладий 13,5%, серебро 53,9%). Кроме серебра и палладия спла­вы содержат небольшие количества легирующих элементов (цинк, кадмий).

Для изготовления коронок применяется серебряно-палладиевый сплав с более низким содержанием палладия (ПД-190), для литых конструкций - с большим (ПД-250).

Паяют серебряно-палладиевые сплавы золотым припоем 750 пробы, от­беливают в 10-15% р-ре соляной кислоты.

ВОПРОС 15

Токсическое, аллергическое и электрохимическое действие металлических сплавов на организм больного

Токсическое действие сплавов обусловлено их составом. Например, припой содержит медь и цинк, окислы которых токсичны. В клинике это проявляется в появлении чувств соленого, кислого, что иногда ошибочно приписывается галь­ваническим токам, якобы присутствующим в полости рта при наличии протезов. Устранение токсического действия протезов возможно путем применения новых материалов и технологии, не содержащих раздражающих веществ.

Аллергические реакции в виде стоматитов, развивающиеся при пользо­вании протезами, относятся к контактным из группы реакций замедленного действия. Вещества, вызывающие контактную аллергическую реакцию, по своим свойствам не антигены, так как не имеют белковой природы. Они приобретают эти свойства в результате химического соединения с белками организма. Подобные вещества принято называть гаптенами.

В сплавах гаптенами могут являться окислы металлов.

При соединении разнородных металлов и наличии электролита образуются гальванические пары. В этих парах металл с низким потенциалом является ано­дом и разрушается, переходя в раствор. Таким образом, более отрицательный электрод в гальваническом элементе растворяется и постепенно разрушается. Это свойство металлов следует учитывать при составлении сплавов, так как структурные составляющие сплава замкнуты через всю массу металла и обра­зуют большое количество микроэлементов. На усиление разности потенциала влияет не только состав, но и структура вещества, состояние поверхности ме­талла, величины рН слюны. Чем выше кислотность слюны, тем больше величи­на электродвижущей силы гальванического элемента.

Слабые гальванические токи (40-70 мкА) вызывают не только электрохимичес­кую коррозию, но и хроническое раздражение слизистой оболочки полости рта. Это явление нежелательное, поэтому применение металлов и сплавов с различны­ми потенциалами недопустимо. Для защиты от электрохимической коррозии в спла­вы вводят метатлы, имеющие способность пассивироваться и передавать это свой­ство сплаву, или составляют сплавы из металлов с близким потенциалом.

ВОПРОС 16 Принципы выбора материалов для протезирования при

явлениях непереносимости Непереносимостьпластмассовыхпротезов

Этим термином обозначают симптомокомплекс неприятных ощущений, зас­тавляющих больного отказаться от пользования пластмассовым протезом или пользоваться им кратковременно. В это понятие входят клинические симптомы, сопровождающие различную по своему происхождению патологию, связанную с побочным и аллергическим воздействием материала базиса протеза. Наиболее вероятно утверждение, что при непереносимости имеет место сочетание явлений гиперестезии слизистой оболочки протезного ложа различной этиологии с явле­ниями аллергии в виде контактного стоматита. Дифференциальная диагностика между ними представляет известные трудности, обусловленные общностью про­явлений и несовершенством диагностики некоторых аллергических реакций.

Лечение. Повторное протезирование с точным соблюдением режима по­лимеризации базиса протеза. Если это не приносит успеха, следует выбрать для базиса другой материал, в частности, применить металлический сплав.

Из сплавов лучше всего больными переносятся сплавы золота
Материалы для изготовления вкладок и коронок

Материалами для коронок служат сплавы золота 900 пробы, серсбряно-палладиевые и кобальто-хромовые сплавы, нержавеющая сталь, пластмас­сы, керамика (ситалл, фарфор).

Материалы для изготовления вкладок: кобальто-хромовый сплав, спла­вы золота (750-я проба), серебряно-палладиевый сплав, пластмассы, фар­фор, композиционные материалы.

Вкладки и коронки могут быть комбинированными.

Подробнее смотри соответствующий вопрос.

ВОПРОС 18

Керамические (фарфор, ситалл} и полимерные облицовочные массы. Показания к их применению

Для достижения высокой эстетичности коронок и мостовидных протезов используются керамические материалы (Фарфор).

Стоматологические фарфоровые массы состоят из полевого шпата, кварца, каолина, флюсов — веществ, понижающих температуру плавления фарфоро­вой массы и красителей (двуокись титана, окиси марганца, хрома, цинка).

Стоматологический фарфор классифицируется на тугоплавкий (1300-1370°); среднеплавкий (1090-1260°); низкоплавкий (870-1065°).

При изготовлении коронок, вкладок, мостовидных протезов фарфоро­вый порошок смешивают с дистиллированной водой до консистенции гус­той кашицы и наносят на матрицу из платиновой фольги или на каркас мос-товидного протеза. Кашицу конденсируют, избыток удаляют фильтроваль­ной бумагой, подсушивают у входного отверстия печи и проводят обжиг в режиме, рекомендуемом заводом-изготовителем.

Фарфоровая масса "Гамма" предназначена для изготовления жакетных коронок при температуре 1100-1 ПО°С.

Масса фарфоровая МК предназначена для облицовки металлических кар­касов на основе неблагородных сплавов при изготовлении метаплокерами-

ческих протезов.

Ситалловый материал "Сикор" получают путем кристаллизации расплав­ленной стекломассы под действием катализаторов (окислы некоторых ме­таллов или их коллоидные частицы). Этот материал имеет высокую проч­ность и относительно низкую температуру обжига - 860-960°. Обжиг можно вести и на золотой фольге.

Материалы зарубежного производства "Витадур", "Виводент", "Керами-ко" предназначены для изготовления фарфоровых коронок, "Виводент-ИТС", "ВМК-68", "Керамико", "Биодент" - для металлоксрамических протезов.

Пластмассы Синма-74 и Синма-М применяются в ортопедической стома­тологии для изготовления коронок и'облицовки несъемных зубных протезов (штамповано-наяных и цельнолитых). Пластмасса Синма-М обеспечивает высокие эстетические свойства зубных протезов благодаря возможности послойного моделирования протеза массами разного цвета.

Несъемные зубные протезы могут быть изготовлены как из пластмассы без соответствующей металлической арматуры, так и с ее применением. Ме­таллические конструкции в комбинированных протезах должны покрываться специальньш лаком (ЭДА-03 или лаком покрывным для зуботсхнических работ), в противном случае металл будет просвечивать через пластмассу и искажать ее цвет, тем самым снижая эстетическую ценность протеза.

РАЗДЕЛ 5 ТЕХНОЛОГИЯ ПРОТЕЗОВ

Вопрос 1 Технология штампованной коронки

Этапыизготовления:

1. Получение моделей зубов и челюстей и фиксация их в артикуляторе

или окклюдаторе;

2. Моделирование коронок зубов;

3. Выделение из моделей гипсовых форм штампа;

4. Получение штампов из легкоплавкого металла;

5. Подбор и подготовка гильз;

6. Штамповка коронок;

7. Шлифовка и полировка искусственной коронки.

Моделированиекоронокзубов

Задачей моделирования является восстановление анатомической формы, которая была нарушена патологическим процессом и препаровкой.

К восстановлению (моделированию) формы зуба на модели приступают после очерчивания линии десневого края (клинической шейки) у каждого зуба химическим карандашом, чтобы точно сохранить ее уровень и рельеф

на гипсовой форме зуба.

Моделирование производят с помощью моделировочного воска путем постепенного наслаивания его на гипсовую культю зуба и последователь­ного восстановления всего рельефа и формы коронковой части зуба, начи­ная с вестибулярной, затем язычной (или небной), жевательной и боковых поверхностей. Важно, чтобы воск не доходил до линии шейки на 1,0-1,5 мм, иначе объем шейки зуба будет увеличен и коронка плотно ее не охватит. Смоделированный зуб по объему должен быть меньше восстанавливаемого (равномерно со всех сторон) на толщину металла (0,2-0,3 мм). Бугры при моделировании не должны быть чрезмерно выражены. Между боковыми поверхностями восстанавливаемого зуба и соседними зубами на уровне эк­ватора оставляют просвет на толщину металла.

Моделирование производят только на затвердевшем воске. Восковая модель зуба должна иметь плавные переходы с одной поверхности на дру­гую, без острых выступов и граней.

Моделирование формы зубов при наличии антагонистов должно прово­диться обязательно на моделях, залитых в артикулятор или окклюдатор.

Первая порция воска, которую наносят на культю, должна кипеть для хорошего склеивания воска с гипсом.

Последующими порциями расплавленного воска увеличивают объем культи. Пока воск в пластичном состоянии, смыкают окклюдатор и получа­ют отпечаток жевательной поверхности антагонистов. Такой отпечаток не­обходим для ориентировочного представления о форме жевательной повер­хности моделируемого зуба.

Хорошим ориентиром при моделировании служит одноименный зуб про­тивоположной стороны. Изготовлениеметаллическогоштампа

Для получения металлического штампа сначала изготавливают его фор­му из гипса. Для этого из гипсовой модели плоской пилкой выпиливают фрагмент и срезают излишки гипса так, чтобы ось коронки зуба совпадала с осью основания. Затем на гисовом штампе параллельно линии шейки зуба, отмеченной ранее карандашом на расстоянии 1мм, проводят вторую ли­нию, по этой линии острием шпателя делают углубление, после чего гипс между первой и второй линиями срезается. Пространство между первой и второй линиями обусловливает в последующем ширину и длину коронки в ее поддесневой части. Если шейка отгравирована правильно, то сбоку про­странство между первой и второй линиями имеет вид вертикальной линии, продолжающей линию шейки (рис. 196).

После этого гипсовый штамп замачивается в мыльном растворе на 10-15 мин, замешивают гипс, заливают его в специальную рамку. Гипсовые штам­пы погружают в гипс апроксимальной стороной точно наполовину на рас­стоянии 1см друг от друга. После затвердевания гипса форму освобождают от рамки, замачивают на 10-15мин в мыльном растворе, а затем для получе­ния второй половины формы заливают ее новой порцией гипса (рис. 19а)

Рис. 19. Этапы изготовления штампованной коронки 1 -линия воска, 2 -линия клинической шейки зуба, 3 -линия края коронки

После затвердения гипса форму раскрывают с помощью поколачивания молоточком по торцовой части. Гипсовые штампы осторожно удаляют, обе половины формы соединяют и заливают легкоплавкий металл в имеющиеся в форме отверстия ложа штампов.

После охлаждения металла форму раскрывают и вынимают отлитые ме­таллические штампы.

Для каждого зуба надо отливать два металлических штампа: один для предварительной штамповки, другой - для окончательной.

После обработки металлический штамп готов для изготовления по нему металлической коронки.

Подбориподготовкакштамповке

Правильно подобранная гильза и трудом натягивается на металлический штамп. Если гильза широкая, можно сузить ее до нужного размера с помо-Щью аппарата "Самсон". Перед этим гильзу отжигают.

Надев гильзу на штамп, вколачивают его молотком в гильзу, помещен­ную в образованное углубление свинцовой пластинки, до тех пор, пока на Дне гильзы не появятся первые отпечатки - формы поверхности зуба.

Как только окклюзионная поверхность будет отштампована, гильзу сни-мают со штампа. Затем гильзу снова отжигают. Золотую коронку перед отжи--------„„,„„.,. „ л.п-^0% пастворе соляной или азотной

мают со штампа. Затем гильзу снова отжшакн. ачл^^. ..-,.___.,

гом обязательно нужно прокипятить в 40-50% растворе соляной или азотной . „„.^„^„„о т»гкг»ппяпкпго металла.

гом осязательна пуяу,,и ..,,„..............

кислоты для удаления остатков легкоплавкого металла.

Ответы на экзаменационные вопросы

I
1   2   3   4   5   6   7   8   9   ...   27


написать администратору сайта