Главная страница
Навигация по странице:

  • 7. Новые подходы к анализу данных, измеренных по порядковым и номинальным шкалам

  • Литература для дополнительного чтения

  • Рабочая книга социолога. Вторая структура социологического знания общая социологическая теория


    Скачать 3.63 Mb.
    НазваниеВторая структура социологического знания общая социологическая теория
    АнкорРабочая книга социолога.doc
    Дата19.11.2017
    Размер3.63 Mb.
    Формат файлаdoc
    Имя файлаРабочая книга социолога.doc
    ТипГлава
    #10295
    КатегорияСоциология. Политология
    страница17 из 38
    1   ...   13   14   15   16   17   18   19   20   ...   38

    Коэффициенты взаимозависимости для номинального

    уровня из­мерения.

    Связь в табл. 2 X 2. Простейшая задача о взаимозависимости возникает тогда, когда имеются два признака, каждый из которых принимает два значения (табл. 13).



    Представим данные о группировке по этим двум признакам так;



    Для характеристики степени связи двух признаков применяется коэффициент Ф, определяемый формулой



    Коэффициент Ф равен 0, если нет соответствия между двумя дихотомическими переменными, и равен 1 или —1, когда имеется полное соответствие между ними. В силу трудностей. с интерпрета­цией знака коэффициента для катетеризованных (поминальных) переменных часто используют в анализе лишь абсолютную величи­ну—|Ф|. Ф легко интерпретируется, поскольку показано, что он представляет собой просто коэффициент корреляции r, если значе­ния каждой дихотомической переменной обозначить 0 и 1.

    Как уже отмечалось, Ф вычисляется для катетеризованных дан­ных, представляющих естественные дихотомии: пол, раса, и т. п. Приведение количественных переменных к дихотомическому виду связано .с выбором граничной точки разделения (например, мужчи­ны до 30 лет и мужчины старше 30 лет). Искусственная дихотомизация, столь часто необходимая в конкретном исследовании при изучении взаимосвязи признаков, может привести к тому, что одна часть дихотомической переменной по своему воздействию будет бо­лее значима для одной связи, другая —для другой, а это даст оши­бочный результат.

    Измерение связи в табл. с X k. Рассмотрим теперь более общую ситуацию, когда две переменные классифицированы па две или более категории. Запишем это таким образом:



    где nij частоты; ni— маргинальные суммы частот по строкам; nj— маргинальные суммы частот по столбцам. На с. 169—172 для выяс­нения отклонения от независимости распределения значений в по­добном случае использовался критерий c2. Однако сама величина c2не очень подходит в качестве меры связи, поскольку сильно зависит от числа категорий.

    Нормированным коэффициентом корреляции для таблицы c X k является коэффициент сопряженности Пирсона (P)



    Коэффициент Р = 0 при полной независимости признаков. Недо­статком, его является зависимость максимальной величины Р от размера таблицы (максимум Р достигается при c = k, но сама гра­ница изменяется с изменением числа категорий). В связи с этим возникают трудности сравнения таблиц разного размера.

    Чтобы исправить указанный недостаток, Чупров ввел другую величину:



    При с = kТдостигает +1 в случае полной связи, однако не обла­дает этим свойством при k не равно с.

    Коэффициент Крамера (К) может всегда достигать +1 незави­симо от вида таблицы:



    Для квадратной таблицы коэффициенты Крамера и Чупрова совпа­дают, а в остальных случаях К > Т.

    Величина c2 быстро вычисляется с помощью формулы



    Вычисление коэффициентов Р, Т и К связано с теми же ограни­чениями на х2, которые сформулированы на с. 172.

    Следующая группа коэффициентов связи для категоризованных данных основана на предположении, что если две переменные свя­заны, то информация об одной переменной может быть использо­вана для предсказания другой. Так, если предположить, что связь между полом индивида и его отношением к правилам уличного движения абсолютно детерминирована, то согласно табл. 13 либо все мужчины были бы нарушителями, а женщины нет, либо наоборот. Поскольку это не так, то возникает несоответствие, или, как говорят, ошибка предположения абсолютной связи (обозначим величину этой ошибки 0А).

    С другой стороны, можно предположить, что два признака абсо­лютно не связаны, и нельзя на основе одной переменной предска­зать другую. Поскольку это тоже не так, то возникает ошибка предположения об отсутствии связи (00).



    может служить мерой относительного уменьшения ошибки при- использовании информации об одной пе­ременной для предсказания другой.

    Признак, на основе которого предсказывается другой признак, будем называть независимой переменной, а предсказываемый — за­висимой.

    Тогда для случая, когда зависимая переменная расположена по строкам таблицы (т. е. Категории расположены по строкам), вычис­ляется коэффициент связи lг:



    где max nнаибольшая частота в столбце r; max n jнаибольшая маргинальная частота для строк j.

    Пример. Вычислим К2для данных табл. 13 в предположении, что K1 независимая переменная, а отношение к правилам уличного движения — зависимая



    Таким образом, использование информации о поле обследованных для предсказания отношения к правилам движения не умень­шает относительной ошибки.

    Если зависимая переменная — это категории столбцов таблицы, то совершенно аналогично предыдущему вычисляется



    где mах nij — наибольшая частота в строке; max ni— наибольшая

    маргинальная частота для столбцов i.

    Для нашего примера, когда пол зависимая переменная, l = 0,4, т. е. получаем 40%-пое уменьшение в ошибке, если используем от­ношение к правилам в качестве предсказывающей пол нарушителя.

    Коэффициенты А и К имеют пределы изменения от 0 до 1. Чем ближе Кгили Кск 1, тем больше относительное уменьшение в ошиб­ке и большее соответствие (связь) между переменными. Эти коэф­фициенты могут быть использованы для таблиц любого размера.

    В ряде случаев удобно использовать симметричную l:



    Разнообразие корреляционных коэффициентов продиктовано стремлением отразить реально существующее разнообразие типов связей в природе и обществе. Поэтому данное обстоятельство сле­дует рассматривать скорее как свидетельство достоинств статисти­ческого аппарата, заключающихся в гибкости и большой приспособ­ленности его к анализу сложнейших взаимосвязей в социальной области. Каждый корреляционный коэффициент приспособлен дли измерения вполне определенного вида связи. Техника расчета и конструкция формулы одного и того же коэффициента могут изме­ниться в зависимости от того, какие (например, сгруппированные или не сгруппированные) данные приходится анализировать. Срав­ните, например, различные варианты формул для парного коэффи­циента корреляции r. Таким образом, применение того или иного показателя определяется природой данных и формой их представ­ления. Требуемая степень точности также может существенно по­влиять на выбор способа расчета связи в каждом конкретном слу­чае. Обычно оценка пригодности той или иной формулы произво­дится с учетом следующих факторов:

    1) природы данных (качественные или количественные при­знаки);

    2) формы и типа зависимости (линейная или нелинейная, поло­жительная или отрицательная связь);

    3) требуемой точности расчетов (например, коэффициенты кор­реляции рангов rи t иногда могут использоваться вместо более точных мер rи t2);

    4) удобства при вычислении и сравнительной простоты интер­претации;

    5) трудностей технического порядка (имеется ли счетная техни­ка или нужно вести расчеты вручную);

    6) распространенности использования того или иного коэффици­ента корреляции;

    7) возможности сравнения различных коэффициентов.

    Обычно предпочитают использовать наиболее распространенные в практике социологических исследований коэффициенты, так как тем самым достигается возможность сравнения полученных резуль­татов с материалами других исследований.

     

    7. Новые подходы к анализу данных, измеренных по порядковым и номинальным шкалам

    В последние годы как у нас в стране, так и за рубежом разработано довольно много математических методов, предназначенных для анализа дан­ных, полученных с помощью измерения по номинальным п порядковым шка­лам. Однако многие из них малознакомы широкому кругу социологов. В на­стоящем параграфе представлен краткий обзор таких методов. К сожалению, в силу сложности и большого объема материала нет возможности подробно изложить суть каждого метода и тем более описать конкретную методику его применения. Поэтому все излагаемое ниже можно рассматривать лишь как некоторое указание на то, к какой литературе необходимо обратиться для решения соответствующей задачи и какого рода вопросы необходимо поста; вить в этой связи перед математиком.

    Наиболее распространенными задачами, при решении которых исследова­тель прибегает к помощи математических методов, являются задачи изучения связей между признаками, нахождения латентных переменных, классифи­кации объектов.

    Рассмотрим задачу изучения связей между признаками. В предыдущем разделе этой главы уже рассматривались меры связи между номинальными признаками, основанные на анализе таблиц сопряженности. Определенного рода обобщением способов измерения таких связей с помощью критерия c2 можно считать метод логлинейного анализа частотных таблиц. В отличие от упомянутых мер связи логлинейный анализ позволяет анализировать таблицы сопряженности любой размерности и проверять гипотезы о наличии сложных структур связи, состоящие из предположений о существовании связей внутри каждой из нескольких групп признаков одновременно. Принципы логлинейного анализа описаны в литературе достаточно подробно31.

    В основе традиционных подходов к измерению связей между номинальны­ми признаками лежит представление о последней как об «интегральной», т. е. о связи между рассматриваемыми признаками «в целом» (при расчете меры связи учитываются одновременно все те значения, которые эти признаки мо­гут принимать). Однако такое понимание связи не является единственно возможным. Она может пониматься и как «локальная», т. е. как связь между отдельными значениями (одним или несколькими рассматриваемыми призна­ками). Наличие «интегральной» связи отнюдь не означает наличия «локаль­ной», и наоборот. Так, вывод об отсутствии «интегральной» связи между полом и курением (например, основанный на малой величине c2) может не под­твердиться на основе «локального» анализа той же таблицы данных: т. е. можно предположить, что свойство респондента «быть мужчиной» довольно жестко определяет то, что этот человек курит (свойство «быть женщиной» в этом смысле может быть не связано с курением).

    В настоящее время разработан довольно широкий круг методов анализа описанных «локальных» связей. В литературе они часто называются метода­ми поиска детерминирующих комбинаций значений переменных (или взаимо­действий последних)32. Прежде чем подробнее пояснить суть задачи и подхо­ды к ее решению, введем некоторые обозначения.

    Пусть изучается влияние каких-то I признаков (переменных), обозначае­мых ниже х1, х2, ..., xi, па некоторый интересующий исследователя признак у. Признаки x2, хг, ..,, xiбудем называть независимыми переменными, а при­знак у — зависимой переменной. Поясним, что имеется в виду под задачей поиска детерминирующих комбинаций значений переменных.

    Исследователь полагает, что рассматриваемые независимые признаки в определенной степени обусловливают тип поведения изучаемых объектов, проявляющийся в том, какие значения для того, или иного объекта может принимать зависимая переменная. Другими словами, выдвигается гипотеза о соответствующей детерминации (типа поведения сочетаниями значений не зависимых переменных).

    Упомянутый тип поведения может пониматься по-разному. Например, его можно определить как указание вероятностей, с которыми объект, обладающий заданным сочетанием значений ж, имеет то или иное значение. В та­ком случае тип поведения фактически отождествляется с распределением зна­чений зависимого признака для объектов, имеющих рассматриваемый набор значений независимых признаков. Например, если при решении упомянутого (выше вопроса о связи пола респондента с привычкой к курению придем к выводу, что для мужчин вероятность иметь такую привычку равна 0,8, а не иметь ее — 0,2 и что для женщин аналогичные вероятности равны соответ­ственно 0,3 и 0,7, то будем иметь основания говорить о двух типах поведения респондентов, каждый из которых определяется полом последних.

    Можно тип поведения отождествить со средним арифметическим множе­ства значений зависимой переменной для рассматриваемой совокупности объектов (в таком случае естественно предполагать, что значения у получены по интервальной шкале). Пусть, например, у — это время, затрачиваемое рес­пондентом в течение дня на чтение газет, х — пол респондента, х2его обра­зование. Если в процессе исследования мы обнаружим, что мужчины с высшим образованием тратят на чтение газет в среднем 1,5 часа в день, а жен­щины с начальным образованием — 0,01 часа, то можно будет говорить о двух типах поведения респондентов, каждый из которых соответствующим образом связан с рассматриваемыми независимыми признаками.

    Тип поведения объекта можно отождествить и с тем, что для этого объ­екта у принимает определенное значение. Подчеркнем, что в любом случав упомянутая выше гипотеза о детерминации не может означать предположе­ния о «жестком» определении значения по сочетанию значений х.

    В соответствии с выдвинутой гипотезой исследователь ставит перед собой задачу выяснить, какие именно сочетания значений независимых признаков являются в интересующем его смысле детерминирующими (определяющими тип поведения объектов). Иногда к этому добавляется и задача выделения и числа независимых переменных подсовокупности признаков, наиболее инфор­мативных в том смысле, что по сочетанию именно их значений с наибольшей степенью уверенности можно судить о типе поведения объектов. В едином. Комплексе с этими задачами может решаться и задача выявления самих ти­пов поведения, свойственных объектам изучаемой совокупности. Именно соче­тание названных трех задач (может быть, без второй или третьей) и называ­ется задачей поиска детерминирующих комбинаций значений переменных.

    В соответствии с тем, как понимается тип поведения объектов, должен формироваться критерий, является ли тот или иной набор сочетаний значений х детерминирующим это поведение. Многообразие" методов поиска детермини­рующих характеристик и объясняется в основном различием таких критериев.

    Например, первому описанному выше пониманию типа поведения отвечает поиск такого разбиения исходной совокупности объектов (соответствующего определенному набору сочетаний значений х), что каждой выделенной подсо­вокупности будет соответствовать свое распределение значений у (степень различия распределений определяется в соответствии с известными статисти­ческими критериями). Искомые детерминирующие комбинации — это те на­боры сочетаний значений х, которые соответствуют выделенным подсовокупностям33.

    Второму пониманию типа поведения отвечает такое разбиение исход­ной совокупности объектов, при котором каждая подсовокупность будет иметь свое среднее арифметическое значение у (т. е. разница между соответствующими средними значениями будет статистически значима)34. Отметим тесную связь такого подхода с, методами дисперсионного анализа, с помощью которого мож­но изучать влияние совокупности качественных признаков на некоторый количественный признак35. Однако дисперсионный анализ предназначен для изучения «интегральных» связей. Он исходит из априори заданных групп объектов — каждая группа соответствует одному возможному сочетанию значений независимых переменных и позволяет проверить гипотезу о совпадении типов поведения этих групп (тип поведения в дисперсионном анализе пони­мается именно рассматриваемым образом). Описываемые же нами методы решают более широкую задачу — они позволяют проанализировать стой же точки зрения все возможные группы объектов, соответствующие тому или иному набору сочетаний значений независимых переменных.

    Подчеркнем, что при использовании описанных подходов ищутся не толь­ко сочетания значений независимых переменных, определяющих некоторые типы поведения, но и сами эти типы.

    Для иллюстрации одного из возможных подходов к поиску детерминирую­щих комбинаций значений переменных при третьем упомянутом выше пони­мании типа поведения дадим некоторые определения, введенные С. В. Чесноковым36, и приведем пример из его же работы. Привлекательность методики поиска детерминирующих характеристик, предложенной этим автором, в том, что она по существу является формализацией рассуждений, наиболее часто использующихся социологом при практическом решении задач о статистиче­ской зависимости.

    Рассмотрим случай, когда данные представлены таблицей 2 X 2, изучае­мые объекты — респонденты, признак хпринимает значения а и b, а признак у — значения с и d. Назовем типом поведения респондента соответствующее ему значение у и ниже будем говорить о детерминации значением а тина поведения с. Очевидно, считать, что такая детерминация действительно имеет место, можно только в том случае, если достаточно велика «степень уверен­ности» в реализации поведения с для объекта со значением а независимой переменной. Уточним смысл такой уверенности.

    Назовем интенсивностью детерминации а®с величину I(а®с), равную доле респондентов, для которых у = с в группе респондентов, удовлетво­ряющих условию: х=а. Интенсивность детерминации означает точность вы­сказывания если а, то с. Назовем емкостью детерминации а®с величину с(а®с), равную доле респондентов, для которых х = а, в группе респондентов, удовлетворяющих условию у = с. Емкость детерминации измеряет долю случаев реализации поведения с, которая «объясняется» высказыванием «из а следует с». Емкость с(а®с) отражает, насколько всеобъемлюще объяснение, по­строенное на детерминации а®с, т. е. полноту этой детерминации.

    Для обоснованности выводов о том, что «а влечет с», недостаточно знать, необходимо оценить и С.

    Пример. Пусть х — пол (а — мужчина, bженщина), а у — величина зарплаты (с — высокая, dнизкая). Предположим, что частотная таблица имеет вид





    На основании того, что 70% мужчин имеют высокую зарплату, мы не можем говорить, что под детерминирует величину зарплаты. Для этого выво­да необходимо еще оценить, какова доля мужчин среди лиц с высокой зар­платой. Например, если этот процент равен /, то сформулированный вывод вряд ли можно считать справедливым. Полученные же в рассматриваемом примере 40% могут способствовать обоснованию этого вывода, если исследо­ватель сочтёт этот процент достаточно высоким.

    Показатели, аналогичные введенным величинам I и С, легко можно оп­ределить и для того случая, когда количество независимых признаков более одного.

    Очевидно, в отличие от тех ситуаций, когда тип понимается одним из двух описанных выше способов, в данном случае мы не выявляем типы по­ведения в процессе нахождения детерминирующих сочетаний. Такая задача решается отдельно для каждого значения зависимой, .переменной: фиксируя это значение (т.е. тип поведения), мы ищем такие сочетания значений не­зависимых переменных, которые определяют его с достаточно высокими зна­чениями I и С (смысл выражения «достаточно высокие» определяется иссле­дователем).

    Наряду с методами поиска детерминирующих комбинаций значений пе­ременных разработаны подходы к выявлению связей между номинальными признаками, аналогичные методам регрессионного анализа. В последнее деся­тилетие был предложен ряд подходов к решению этого вопроса37. Опишем один из них.

    Прежде всего заметим, что если все рассматриваемые переменные ди­хотомические, то, применяя к исходным данным технику обычного регрес­сионного анализа, будем получать содержательно интерпретируемые резуль­таты38. Это связано с тем, что дихотомическую шкалу можно считать частным случаем интервальной. Приведем пример вычисления регрессионной зависимости между номинальными переменными, в котором реализуется метод, основанный на сделанном замечании.

    Сначала каждая переменная, принимающая I значений, заменяется на I фиктивных дихотомических переменных: каждому исходному значению соответствует своя дихотомическая переменная.

    Пусть X1 и Х2—исходные независимые номинальные переменные, при­нимающие каждая три значения — 1, 2, 3. Через х1, х2, x3, x4, x5, x6 обозначим вводимые фиктивные переменные (x1, х2, х3соответствуют переменной Х1 а х4, х5, х6Х2). Значения, принимаемые фиктивными переменными, можно понять из следующей таблицы, где приведены значения X1 и X2 для некото­рых трех объектов.



    К полученным фиктивным переменным применяется обычная техника регрессионного анализа. Причем, поскольку зависимая переменная также заменена на k фиктивных переменных (если она принимает k значений), вме­сто одного уравнения рассчитывается k уравнений: для каждой упомянутой фиктивной переменной строится свое уравнение регрессии. Для оценивания влияния независимых переменных на зависимую в целом (а не на отдельные соответствующие ей фиктивные переменные) служит комплекс различных коэффициентов.

    Аналогичный подход можно использовать и в случае, если зависимая

    переменная получена по интервальной шкале39. Как уже отмечалось, помимо задачи анализа связей между переменными, довольно актуальными для социологии являются также задачи нахождения латентных переменных и классификации объектов. Правда, эти задачи очень часто можно рассматривать как частный случай задачи изучения связей: ла­тентные факторы обычно находятся именно на основе анализа связей между наблюдаемыми признаками, а для осуществления классификации, как пра­вило, анализируются связи между объектами. Но тем не менее названные задачи имеют и свою специфику, обусловленную их ролью в изучении инте­ресующих социолога вопросов. Это обусловливает и определенную специфику соответствующих математических методов. Поэтому имеет смысл сказать несколько слов о путях решения обеих задач, когда изучаемые объекты харак­теризуются значениями номинальных или порядковых признаков40.

    Поиск латентных переменных может осуществляться с помощью методов латентно-структурного анализа. Кроме того, возможны различные подходы к использованию традиционных методов факторного анализа для анализа данных, полученных по порядковой и номинальной шкалам41.

    Основная проблема, встающая перед исследователем, желающим приме­нить математические методы классификации к объектам, заданным значения­ми номинальных и порядковых признаков,— это проблема выбора меры бли­зости между этими объектами. Большинство традиционных мер рассчитано на признаки, измеренные по интервальной шкале. Однако известны и такие меры, которые могут быть применены в интересующем нас случае. Выбор подходящей меры близости обеспечивает возможность использования многих методов классификации42.

    Далее рассмотрим несколько разработанных советскими авторами общих подходов к задаче анализа качественных данных.

    Первый подход предложен Г. С. Лбовым43. Автор предполагает, что ис­ходные признаки могут быть измерены по любой шкале, и следующим обра­зом вводит понятие логического высказывания, являющегося основным во всех предложенных им алгоритмах.

    Если признак Хi измерен по номинальной шкале и а1i, а2i, ..., ali— его значения, то назовем элементарным высказыванием выражение вида xi= = аji (j=1, ..., р). Если признак xiизмерен по шкале, тип которой не ниже порядковой шкалы, b и с — произвольные его возможные значения и b < с, то назовем элементарным высказыванием выражение вида b < хi < с.

    Приведем пример логической закономерности. Пусть х1пол, принимаю­щий два значения: 0 (мужчина) и 1 (женщина); хгудовлетворенность респондента своей работой, измеренная по порядковой шкале с градациями 1 ..., 5; x3 — зарплата респондента, измеренная по шкале отношений (в руб.). Примером логического высказывания может служить выражение (х1 = 0) Ç (3 < х2<= 5) Ç (100 < x3 <=120). Ясно, что каждое логическое вы­сказывание задает определенную область рассматриваемого признакового пространства.

    Разработанный Г. С. Лбовым подход к анализу исходных данных, полу­ченных по разным шкалам, с успехом позволяет решать задачи, подобные описанным выше задачам поиска детерминирующих комбинаций значений признаков. А именно автор предлагает алгоритм, согласно которому при лю­бом разбиении исходной совокупности объектов па классы (это разбиение может быть осуществлено, в частности, в соответствии со значениями не­которого зависимого признака) для каждого такого класса может быть осу­ществлен поиск логических высказываний, выполняющихся (т. е. истинных) на принадлежащих ему объектах. Выполнение понимается в некотором статистическом смысле. Грубо говоря, выполнение высказывания для объектов какого-либо класса означает, что это высказывание истинно для большинства объектов этого класса.

    Но тот же подход позволяет решать и гораздо более широкий круг встаю­щих перед социологом задач: задачу автоматической классификации исход­ных объектов (грубо говоря, в разные классы попадают объекты, для кото­рых выполняются разные логические высказывания); задачу построения ло­гических решающих правил, т. е. «границ» между классами, если задано, в какой класс каждый объект входит (такие правила также определяются в терминах логических высказываний); задачу динамического прогнозирования (алгоритм использует логические решающие правила), и т. д.

    Второй подход разработан группой исследователей под руководством Б. Г. Миркина44. Авторы этого подхода предлагают рассматривать каждый признак как некоторое отношение на множестве изучаемых объектов и зада­вать его в виде булевой матрицы, т. е. матрицы, элементы которой могут принимать только два значения, например 0 и 1. Приведем пример.

    Пусть для некоторых четырех респондентов заданы значения признаков; пол (0 — мужчина, 1 — женщина) и профессия (принимающая значения 1, 2, 3, 4) и пусть соответствующая матрица «объект — признак» имеет вид



    Тогда рассматриваемым признакам будут соответствовать следующие булевы матрицы:



     

    На пересечении i-го столбца и j-й строки стоит единица, если значения рас­сматриваемых признаков для i-го и j-гообъектов совпадают, и 0 — в проти­воположном случае.

    Авторы рассматриваемого подхода предлагают основанные на использо­вании описанного способа представления исходных данных методы решения широкого круга задач, в том числе и социологических: классификация объ­ектов, изучение связей между признаками, выявление латентных переменных и т. д. Например, в качестве латентного фактора, объясняющего связи между несколькими исходными признаками, заданными матрицами, подобны­ми описанным выше, будет выступать признак, заданный матрицей, в опре­деленном смысле близкой ко всем исходным матрицам одновременно (пер­вым шагом решения соответствующей задачи будет поиск таких групп ис­ходных матриц, для каждой из которых подобную «среднюю» матрицу можно найти).

    Интересный подход к анализу структуры связей между рассматривае­мыми переменными в тех случаях, когда эти переменные измерены по произ­вольным шкалам, предложен Ю. Н. Гаврильцом45. Этот подход позволяет учи­тывать, что связь может быть прямой и опосредованной, тесной и слабой и т. д., что изменение значений части признаков может менять характер распределения у другой части признаков, в то время, как распределение третьей части признаков остается прежним. Основные принципы представле­ния исходной информации, лежащие в основе этого подхода, являются слиш­ком сложными для того, чтобы их можно было сформулировать в настоя­щем параграфе.

    Последний подход к анализу информации, полученной по номинальной или порядковой шкале, о котором нам хотелось бы упомянуть,— это так называемая метризация используемых шкал («Оцифровка» значений признаков). Это — приписывание исходным шкальным значениям таких «меток», чисел, что отношения между получающимися интервалами начинают иметь содержательный смысл. К настоящему времени разработано довольно много способов такого превращения номинально» либо порядковой шкалы в интер­вальную46. Однако использовать их надо с большой осторожностью, по­скольку каждый из этих способов предполагает довольно сильные и часто трудно проверяемые свойства исходных шкальных значений (эти предполо­жения могут быть как содержательными, так и формальными).

    В заключение настоящего раздела отметим, что большинство описанных в этой главе методов реализовано в имеющихся в различных научных цен­трах нашей страны комплексах программ для ЕС ЭВМ. Методы дискриптивной статистики, вычисления всевозможных мер связи, методы регрессионного анализа и другие методы многомерного статистического анализа, в том числе методы поиска детерминирующих характеристик значений независимых при­знаков, реализованы в системе «Социолог», применяемой в ИСИ АН СССР. Алгоритм поиска детерминационных характеристик, основанный на методе С. В. Чеснокова, представлен в системе, разработанной во ВНИИ системных исследований ГКНТ и АН СССР. Упомянутые выше алгоритмы, предложен­ные Г. С. Лбовым, реализованы в пакете программ ОТЕКС Института мате­матики СО АН СССР.

     

    Литература для дополнительного чтения

    Вайнберг Дж.,Шумекер Дж. Статистика. М.: Статистика,1979.389 с.

    Гласе Дж., Стэнли Дж. Статистические методы в педагогике и психологии. М.: Прогресс, 1976. 495 с.

    Крамер Г. Математические методы статистики. М.: Мир, 1975.648 с.

    Лбов Г. С. Методы обработки разнотипных экспериментальных данных. Но­восибирск: Наука, 1981. 160 с.

    Математические методы в социологическом исследовании Отв. ред. Т. В. Рябушкин и др. М.: Наука, 1981. 332 с.

    Миркин Б. Г. Анализ качественных признаков и структур. М.: Статистика, 1980. 166 с.

    Елисеева И. И., Рукавишников В. О. Группировка, корреляция, распознавание образов. М.: Статистика, 1977. 144 с.

    Рунион Р. Справочник по непараметрической статистике. М.: Финансы и ста­тистика, 1982. 198 с.

    Рябушкин Т, В. Теория и методы экономической, статистики. М.: Наука, 1977. 511 с.

    Статистические методы анализа информации в социологических исследованиях Отв. ред. Г. В. Осипов и др. М.: Наука, 1979. 319 с.

    Типология и классификация в социологических . исследованиях Отв. ред.

    В. Г. Андреенков, Ю. Н. Толстова, М.: Наука, 1982. 296 с.

    Тюрин Ю. Н. Непараметрические методы статистики. М.: Знание, 1978. 62 с.

    1   ...   13   14   15   16   17   18   19   20   ...   38


    написать администратору сайта