Главная страница
Навигация по странице:

  • 152) Нервные и гуморальные мех-мы регуляции изотермии.

  • ВЫДЕЛЕНИЕ 153) Значение процесса выдел-я для организма.

  • Органы выделения.

  • Легкие

  • 154) Морфо-функциональная хар-ка нефрона. Строение нефрона.

  • Юкстагломерулярный аппарат

  • 155) Клубочковая фильрация.

  • 156) Канальцевая реабсорбция, ее значение в обр-ии мочи.

  • Механизмы канальцевой реабсорбции.

  • Введение. Физиология. Её место в системе мед образования


    Скачать 0.9 Mb.
    НазваниеВведение. Физиология. Её место в системе мед образования
    Дата26.01.2018
    Размер0.9 Mb.
    Формат файлаdoc
    Имя файлаFIZIOLOGIYa_ekzamen1.doc
    ТипДокументы
    #35246
    страница17 из 21
    1   ...   13   14   15   16   17   18   19   20   21


    151) Роль физ-й терморег-ии.

    Наряду с процессами выработки тепла в организме постоянно происхо­дит его отдача. Она осуществлятся за счет теплопроведения, конвекции, теплоизлучения, испарения. Кроме этого, некоторое количество тепла расходуется на нагревание пищи (до 14 %) и теряется с экскрементами (до 1%). Чем ниже температура окружающей.среды, тем интенсивнее теплоотдача. На холоде кровеносные сосуды кожи, главным образом артериолы, су­живаются. При этом большее количество крови поступает в сосуды брюш Интенсивность теплоотдачи определяется не только соотношением температуры кожи и окружающей среды. Она зависит и от некоторых дру­гих факторов. У животных не последнюю роль играет толщина слоя под­кожного жира, шерстяной покров и подшерсток, густеющий в зиму, а у человека — одежда. Одежда уменьшает теплоотдачу. Потере тепла препят­ствует и тот слой неподвижного воздуха, который находится между одеж­дой и кожей, так как воздух — плохой проводник тепла. Теплопроведение — отдача тепла путем прямого контакта кожи с другими телами и предметами. Чем выше температура тела по отношению к темпе­ратуре предметов, с которыми кожа соприкасается, тем интенсивнее тепло­отдача теплопроведением.

    Конвекция — перенос тепла движущейся средой (воздух, вода). Приле­гающий к коже слой воздуха нагревается до температуры тела и затем, как более легкий, замещается более плотным холодным воздухом. Теплоизлучение. Этот путь теплоотдачи называют также радиационным излучением, или радиацией. Если человек находится в помещении, где имеются холодные предметы большой теплоемкости (холодные стены, ка­менные колонны, металлические сейфы, холодильники, холодные окна и др.), его тело без всякого контакта или соприкосновения с этими предме­тами излучает в их направлении тепловые лучи инфракрасного диапазона.

    Испарение. Организм теряет тепло при испарении с поверхности кожи или слизистых оболочек воды или пота. Потоотделение без испарения не эффективно, так как не способствует отдаче тепла. Только та часть пота, кот испар-ся с поверх-сти кожи, имеет реальное значение для теплоотдачи.
    152) Нервные и гуморальные мех-мы регуляции изотермии.

    Регуляторные реакции, обеспечивающие сохранение постоянства темпе­ратуры тела, представляют собой сложные рефлекторные акты, которые возникают в ответ на раздражение терморецепторов. Одни из них расположены на периферии: в кожных покровах тела, сли­зистых оболочках рта, верхних дыхательных путей, желудка и прямой кишки, стенках подкожных вен, желчном и мочевом пузыре, матке и на­ружных половых органах; другие — в ЦНС: гипоталамусе, среднем и спин­ном мозге, коре большого мозга. Наибольшее количество периферических рецепторов в расчете на единицу поверхности находится в коже лица; зна­чительно меньше на туловище, еще меньше на нижних конечностях. Часть из них (тепловые рецепторы) воспринимает тепло, другая часть (холодо-вые рецепторы) — холод. Только в коже около 30 тыс. тепловых и около-250 тыс. холодовых рецепторов. Тепловые рецепторы функционируют в диапазоне 20—50 °С, холодовые — 10—41 °С.

    При температуре 45 °С холодовые рецепторы вновь активируются,. Этот феномен объясняет парадоксальное ощущение холода в первые секунды при погружении руки в горячую воду. При температуре более 50 °С и хо­лодовые, и тепловые рецепторы повреждаются. При температуре 47—48 °С возбуждаются болевые рецепторы, что объясняет появление болевых ощу­щений. Другая группа терморецепторов, расположенных в ЦНС и прежде всего в гипоталамусе, реагирует на изменение температуры крови, притекающей кнервным центрам. В гипоталамусе различают 3 группы нейронов, принимающих участие в формировании терморегуляторных реакций. У первой группы очень высока чувствительность к местным изменениям температур, зависящих от темпе­ратуры крови, омывающей гипоталамус. Вторая группа нейронов реагиру­ет на импульсацию от периферических терморецепторов, заложенных в коже и других органах и тканях. Третья группа нейронов гипоталамуса ин­тегрирует все сигналы от термочувствительных структур и участвует в вы­работке терморегуляционных реакций.

    При изучении роли различных участков гипоталамуса в терморегуляции обнаружены ядра, изменяющие процесс теплообразования, и ядра, влияю­щие на теплоотдачу. Физическая терморегуляция (теплоотдача) контроли­руется передним отделом гипоталамуса Химическая терморегуляция (теплообразование) контролируется задним отделом гипоталамуса, который считают центром теплообразования. Ретикулярная формация среднего и спинного мозга также принимает участие в терморегуляции.

    ВЫДЕЛЕНИЕ

    153) Значение процесса выдел-я для организма.

    Процесс выделения имеет важнейшее значение для гомеостаза. Органы выделения обеспечивают освобождение организма от конечных продук­тов обмена, которые уже не могут быть использованы, чужеродных и токсичных веществ, а также от избытка воды, солей и органических сое­динений, поступивших с пищей или образовавшихся в результате обме­на веществ (метаболизм). В процессе выделения у человека участвуют почки, легкие, кожа, пищеварительный тракт.

    Органы выделения. Основное назначение органов выделения состоит в поддержании постоянства состава и объема жидкостей внутренней среды организма, прежде всего крови.

    Почки удаляют избыток воды, неорганических и органических веществ, конечные продукты обмена и чужеродные вещества.

    Легкиевыводят из организма СО2, воду, некоторые летучие вещества, например пары эфира и хлороформа при наркозе, пары алкоголя при опь­янении.

    Слюнные и желудочные железы выделяют тяжелые металлы, ряд лекар­ственных препаратов (морфий, хинин, салицилаты) и чужеродных органи­ческих соединений.

    Экскреторную функцию выполняет печень, удаляя из крови ряд про­дуктов азотистого обмена.

    Поджелудочная железа и кишечные железы экскретируют тяжелые ме­таллы, лекарственные вещества.

    Железы кожи играют существенную роль в выделении. Потовые железы выводят с потом из организма воду и соли, некоторые органические веще­ства, в частности мочевину, а при напряженной мышечной работе — мо­лочную кислоту. Продукты выделения сальных и молочных желез кожное сало и молоко имеют самостоятельное физиологическое значение — моло­ко как продукт питания для новорожденных, а кожное сало — для смазыва­ния кожи.

    Почки выполняют ряд гомеостатических функций в организме человека и высших животных.

    1)Участие в регуляции объема крови и внеклеточной жидкости (волюморе-гуляция).

    2)Регуляция концентрации осмотически активных веществ в крови и дру­гих жидкостях тела (осморегуляция).

    3)Регуляция ионного состава сыворотки крови и ионного баланса организ­ма (ионная регуляция).

    4)Участие в регуляции кислотно-основного состояния (стабилизация рН

    крови).

    5)Участие в регуляции артериального давления, эритропоэза, свертыва­ния крови, модуляции действия гормонов благодаря образованию и вы делению в кровь биологически активных веществ (инкреторная функ­ция).

    6)Участие в обмене белков, липидов и углеводов (метаболическая функ­ция).

    7)Выделение из организма конечных продуктов азотистого обмена и чуже­родных веществ, избытка органических веществ (глюкоза, аминокисло­ты и др.), поступивших с пищей или образовавшихся в процессе пищева­рения и метаболизма (экскреторная функция).

    Почка является гомеостатическим органом, участвующим в под­держании постоянства основных физико-химических констант жидкостей внутренней среды, в циркуляторном гомеостазе, стабилизации содержания обмена различных органических веществ в крови.

    Следует разграничить два понятия — функции почки, т.е. физиологиче­скую роль почек в организме, и процессы, обеспечивающие выполнение этих функций почек. К последним относятся: 1) ультрафильтрация крови в клубочках, 2) реабсорбция и 3) секреция веществ в канальцах, 4) синтез новых соединений, в том числе и биологически активных веществ.

    Различные методы, с помощью которых определяют объем и состав вы­деляющейся мочи, оцениваются характер работы клеток почечных каналь­цев, изменения в составе крови, оттекающей от почки. Современные представления о функции почки во многом основаны на данных применения методов микропункции и микроперфузии отдель­ных почечных канальцев. В настоящее время с помощью методов микропункции, микроперфузии, микроэлектродной техники исследуют роль каждого из отделов нефрона в мочеобразовании. Применение микроэлектродов и ультрамикроанализа жидкости, извлеченной микропипеткой, позволя­ет изучать механизм транспорта веществ через мембраны клеток ка­нальцев. При исследовании функции почек человека и животных используют метод «очищения» (клиренс): сопоставление концентрации определенных веществ в крови и моче позволяет рассчитать величины основных про­цессов, лежащих в основе мочеобразования.
    154) Морфо-функциональная хар-ка нефрона.

    Строение нефрона. В каждой почке человека содержится около 1 млн

    функциональных единиц —- нефронов, в которых происходит образование мочи. Каждый нефрон начинается почечным, или мальпигие-вым, тельцем — двустенной капсулой клубочка (капсула Шумлянского — Боумена), внутри которой находится клубочек капилляров. Внутренняя поверхность капсулы выстлана эпителиальными клетками; образующаяся полость между висцеральным и париетальным листками капсулы перехо­дит в просвет проксимального извитого канальца. Особенностью клеток этого канальца является наличие щеточной каемки — большого количест­ва микроворсинок, обращенных в просвет канальца. Следующий отдел нефрона — тонкая нисходящая часть петли нефрона (петля Генле). Ее стенка образована низкими плоскими эпителиальными клетками. Нисхо­дящая часть петли может опускаться глубоко в мозговое вещество, где ка­налец изгибается на 180°, и поворачивает в сторону коркового вещества почки, образуя восходящую часть петли нефрона. Она может включать тонкую и всегда имеет толстую восходящую часть, которая поднимается до уровня клубочка своего же нефрона, где начинается дистальный извитой каналец. Этот отдел канальца обязательно прикасается к клубочку между приносящей и выносящей артериолами в области плотного пятна. Клетки толстого восходящего отдела петли Генле и дистального из­витого канальца лишены щеточной каемки, в них много митохондрий и увеличена поверхность базальной плазматической мембраны за счет складчатости. Конечный отдел нефрона — короткий связующий каналец, впадает в собирательную трубку. Начинаясь в корковом веществе почки, собирательные трубки проходят через мозговое вещество и открываются в полость почечной лоханки.

    Исходя из особенностей структуры и функции почечных канальцев, различают следующие сегменты нефрона: 1) проксимальный, в состав ко­торого входят извитая и прямая части проксимального канальца; 2) тон­кий отдел петли нефрона, включающий нисходящую и тонкую восходя­щую части петли; 3) дистальный сегмент, образованный толстым восходя­щим отделом петли нефрона, дистальным извитым канальцем и связую­щим отделом. Канальцы нефрона соединены с собирательными трубками, которые в сформировавшейся почке функционально близки дистальному сегменту нефрона.

    Кровоток по корковому веществу почки достигает 4—5 мл/мин на 1 г Ткани; это наиболее высокий уровень органного кровотока. Особенность почечного кровотока состоит в том, что в условиях изменения системного АД в широких пределах (90—190 мм рт. ст.) он остается постоянным. Это обусловлено специальной системой саморегуляции кровообращения в почке. Короткие почечные артерии отходят от брюшного отдела аорты, раз­ветвляются в почке на все более мелкие сосуды, и одна приносящая (аф­ферентная) артериола входит в клубочек. Здесь она распадается на ка­пиллярные петли, которые, сливаясь, образуют выносящую (эфферент­ная) артериолу, по которой кровь оттекает от клубочка. Диаметр эффе­рентной артериолы уже, чем афферентной. Вскоре после отхождения от клубочка эфферентная артериола вновь распадается на капилляры, образуя густую сеть вокруг проксимальных и дистальных извитых ка­нальцев. Таким образом, большая часть крови в почке дважды проходит через капилляры — вначале в клубочке, а затем у канальцев. Отличие крово­снабжения юкстамедуллярного нефрона заключается в том, что эфферент­ная артериола, выйдя из клубочка, не распадается на околоканальцевую капиллярную сеть, а образует прямые сосуды, спускающиеся в мозговое вещество почки. Эти сосуды обеспечивают кровоснабжение мозгового Юкстагломерулярный аппарат морфологически образует подобие треу­гольника, две стороны которого представлены подходящими к клубочку афферентной и эфферентной артериолами, а основание — клетками плот­ного пятна (mucula densa) дистального канальца.

    Юкстагломерулярный аппарат участвует в секреции ренина и ряда других биологически активных веществ.
    155) Клубочковая фильрация.

    Ультрафильтрация воды и низкомолекулярных компонентов из плазмы крови происходит через клубочковый фильтр. Этот фильтрационный барьер почти непроницаем для высокомолекулярных веществ. Процесс ультрафиль­трации обусловлен разностью между гидростатическим давлением крови, гидростатическим давлением в капсуле клубочка и онкотическим давлением белков плазмы крови. Общая поверхность капилляров клубочка больше об-

    Фильтрующая мембрана (фильтрационный барьер), через которую про­ходит жидкость из просвета капилляра в полость капсулы клубочка, состо­ит из трех слоев: эндотелиальных клеток капилляров, базальной мембраны и эпителиальных клеток висцерального (внутреннего) листка капсулы — подоцитов. Клетки эндотелия, толщина менее 50 нм;. в цитоплазме имеются круглые или овальные отверстия (поры) размером 50—-100 нм, которые за­нимают до 30 % поверхности клетки. При 'нормальном кровотоке наибо-лее крупные белковые молекулы образуют барьерный слой на поверхности пор эндотелия и затрудняют движение через них альбуминов, ограничивая тем самым прохождение форменных элементов крови и белков через эн­дотелий. Другие компоненты плазмы крови и вода могут свободно прохо-дить через эндотелий и достигать базальной мембраны.

    Базальиая мембрана — важнейшая составная часть фильтрующей мемб­раны клубочка. У человека толщина базальной мембраны 250—400 нм.

    мембрана состоит из трех слоев — центрального и двух периферических. Поры в базальной мембране препятствуют прохождению молекул диамет­ром больше 6 нм. Прохождению белков через клубочковый фильтр препятствуют отрица­тельно заряженные молекулы — полианионы, входящие в состав вещества базальной мембраны. Состав клубочкового фильтрата зависит от свойств эпителиального барьера и ба­зальной мембраны.

    Величина клубочковой фильтрации зависит от разности между гидроста­тическим давлением крови (около 70 мм рт. ст. в капиллярах клубочка), он-котическим давлением белков плазмы крови (около 30 мм рт. ст.) и гидро­статическим давлением в капсуле клубочка (около 20 мм рт. ст.). Эффек­тивное фильтрационное давление, т.е. давление, которое определяет клу-бочковую фильтрацию, составляет примерно 20 мм рт. ст. Ультрафильтрат практически не содержит белков; он подобен плазме по общей концентрации осмотически активных веществ, глюкозы, моче­вины, мочевой кислоты, креатинина и др. Ультрафильтруемая фракция – та части в-ва в плазме от общего его вол-ва в плазме крови, кот не всязана с белком и свободно роходит ч/з клубочковый фильтр. За сутки обр-ся 180л фильтрата.
    156) Канальцевая реабсорбция, ее значение в обр-ии мочи.

    В проксимальном сегменте нефрона прак­тически полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na+, Cl

    , НСОз-В последующих отделах нефрона всасываются преимущественно электро­литы и вода. Вдистальном канальце калий не только реабсорбируется, но и секретируется при его избытке в организме. В проксимальном отделе нефрона реабсорбция натрия, калия, хлора и дру­гих веществ происходит через высокопроницаемую для воды мембрану стен-киканальца. Напротив, в толстом восходящем отделе петли нефрона, ди-стальных извитых канальцах и собирательных трубках реабсорбция ионов и воды происходит через малопроницаемую для воды стенку канальца. Под влиянием импульсов, поступающих по эфферентным нервам, и при действии биологически активных веществ реабсорбция натрия и хлора регулируется в проксимальном отделе нефрона.

    В конечных частях дистального сегмента нефрона и собирательных трубках проницаемость стенки канальца для воды регулируется вазопрессином. Факультативная реабсорбция воды зависит от осмотической проницае­мости канальцевой стенки, величины осмотического градиента и скорости движения жидкости по канальцу.

    Для характеристики всасывания различных веществ в почечных каналь­цах существенное значение имеет представление о пороге выведения. Непо­роговые вещества выделяются при любой их концентрации в плазме крови (и соответственно в ультрафильтрате). Такими веществами являются ину-лин, маннитол. Порог выведения практически всех физиологически важ­ных, ценных для организма веществ различен.

    Механизмы канальцевой реабсорбции. Обратное всасывание различных веществ в канальцах обеспечивается активным и пассивным транспортом. Различают два вида активного транспорта — первично-активный и вторич­но-активный. Первично-активным транспорт называется в том случае, ког­да происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Примером служит транспорт ионов Na+, который происходит при участии фермента Na+-K+-ATOa3bi, ис-Спользующей энергию АТФ. Вторично-активным называется перенос веще-ства против концентрационного градиента, но без затраты энергии клетки непосредственно на этот процесс; так реабсорбируются глюкоза.

    Реабсорбция воды,хлора и некоторых др ионов,мочевины осуществл-ся с пом пассивного транспорта – по электрохим-му,концентрацион-му или осмотич-му градиенту. Фильтруемая ГЛЮКОЗА практически полностью реабсорбируется клетками проксим-го канальцев, и в норме за сутки с мочой выд-ся незначит-е(не более 130 мг) ее кол-ва. АКы почти полностью реаб-ся клетками проксим канальцев. Небольшое кол-во профильровавшегося в клубочках БЕЛКА реаб-ся клетками проксим канальцев.
    1   ...   13   14   15   16   17   18   19   20   21


    написать администратору сайта