Введение. Физиология. Её место в системе мед образования
Скачать 0.9 Mb.
|
Регуляция обмена жиров. Процесс образования, отложения и мобилизации из депо жира регулируется нервной и эндокринной системами, а также тканевыми механизмами и тесно связаны с углеводным обменом. Взаимосвязь жирового и углеводного обмена направлена на обеспечение энергетических потребностей организма. При избытке углеводов в пище триглицериды депонируются в жировой ткани; Сильным жиромобилизирующим действием обладают гормоны мозгового вещества надпочечников — адреналин и норадреналин, поэтому длительная адре- налинемия сопровождается уменьшением жирового депо. Соматотропный гормон гипофиза также обладает жиромобилизирующим действием. Аналогично действует тироксин. Тормозят мобилизацию жира глюкокортикоиды — гормоны коркового вещества надпочечника, вероятно, вследствие того, что они не- сколько повышают уровень глюкозы в крови. Симпатические влияния тормозят синтез тригли- церидов и усиливают их распад. Парасимпатические влияния, наоборот, способствуют отложению жира. Физиологическое значение этих веществ очень велико: они входят в состав клеточных структур, в частности клеточных мембран, а также ядерного вещества и цитоплазмы. Фосфатидами особенно богата нервная ткань. Фосфатиды синтезируются в стенке кишечника и в печени. Исключительно важное физиологическое значение имеют стерины, в частности холестерин. Это вещество входит в состав клеточных мембран, является источником образования желчных кислот, а также гормонов коры надпочечников и половых желез, витамина D. Вместе с тем холестерину отводится ведущая роль в развитии атеросклероза. Содержание холе-^стерина в плазме крови человека имеет возрастную динамику: у новорожденных концентрация холестерина 65—70 мг/ЮО мл, к возрасту I год она увеличивается и составляет 150 мг/ЮО мл. Далее происходит постепенное, но неуклонное повышение концентрации холестерина в плазме крови, которое обычно продолжается у мужчин до 50 лет и у женщин до 60—65 лет. В экономически развитых странах у мужчин 40—60 лет концентрация холестерина в плазме крови составляет 205—220 мг/100 мл, а у женщин 195—235 мг/100 мл. Содержание холестерина у взрослых людей выше 270 мг/100 мл расценивается как гиперхолестеринемия, а ниже 150 мг/100 мл — как гипохолестеринемия. В плазме крови холестерин находится в составе липопротеидных комплексов, с помощью которых и осуществляется его транспорт. У взрослых людей 67—70 % холестерина плазмы крови находится в составе липопротеидов низкой плотности (ЛПНП), 9—10% — в составе липопротеидов очень низкой плотности (ЛПОНП) и 20—24% — в составе липопротеидов высокой плотности (ЛПВП). Белки,УВ 17,17кДж(4,1 ккал); жиры 38,9 кДж(9,3 ккал) 3 УВ, их физиол-я роль. Основная роль углеводов определяется их энергетической функцией. Глюкоза крови является непосредственным источником энергии в организме. Быстрота ее распада и окисления, а также возможность быстрого извлечения из депо обеспечивают экстренную мобилизацию энергетических ресурсов при стремительно нарастающих затратах энергии в случаях эмоционального возбуждения, при интенсивных мышечных нагрузках и др. Уровень глюкозы в крови составляет 3,3—5,5 ммоль/л (60—100 мг%) и является важнейшей гомеостатической константой организма. Особенно чувствительной к понижению уровня глюкозы в крови (гипогликемия) является ЦНС. Незначительная гипогликемия проявляется общей слабостью и быстрой утомляемостью. При снижении уровня глюкозы в крови до 2,2—1,7 ммоль/л (40—30 мг%) развиваются судороги, бред, потеря созна-ния, а также вегетативные реакции: усиленное потоотделение, изменение просвета кожных сосудов и др. Это состояние получило название «гипо-гликемическая кома». Введение в кровь глюкозы быстро устраняет данные расстройства. Изменения углеводов в организме. Глюкоза, поступающая в кровь из кишечника, транспортируется в печень, где из нее синтезируется гликоген. Гликоген печени представляет собой резервный, т. е. отложенный в запас, углевод. Образование гликогена при относительно медленном поступлении глюкозы в кровь происходит достаточно быстро, поэтому после введения небольшого количества углеводов повышения содержания глюкозы в крови (гипергликемия) не наблюдается. Развивающуюся при этом гипергликемию называют алиментарной, иначе говоря — пищевой. Ее результатом является глюкозу-рия, т.е. выделение глюкозы с мочой, которое наступает в том случае, если уровень глюкозы в крови повышается до 8,9—10,0 ммоль/л. При полном отсутствии углеводов в пище они образуются в организме из продуктов распада жиров и белков. По мере убыли глюкозы в крови происходят расщепление гликогена в печени и поступление глюкозы в кровь (мобилизация гликогена). Благодаря этому сохраняется относительное постоянство содержания глюкозы в крови. Гликоген откладывается также в мышцах, где его содержится около1-2 %. Распад углеводов в организме животных происходит как бескислородным путем до молочной кислоты (анаэробный гликолиз), так и путем окисления продуктов распада углеводов до СО2 и Н2О. Регуляция обмена углеводов. Основным параметром регулирования углеводного обмена является поддержание уровня глюкозы в крови в пределах 4,4—6,7 ммоль/л. Изменение содержания глюкозы в крови вос- принимается глюкозорецептами. Показано участие ряда отделов ЦНС в регуляции углеводного обмена. Роль коры большого мозга в регуляции уровня глюкозы крови иллюстрирует развитие гипергликемии у студентов во время экзамена. Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Выраженным влиянием на углеводный обмен обладает инсулин — гормон, вырабатываемый В-клетками островковой ткани поджелудочной железы. При введении инсулина уровень глюкозы в крови снижается. Инсулин является единственным гормоном, понижающим уровень глюкозы в крови. Увеличение уровня глюкозы: глюкагон поджелудочной железы; адреналин — гормон мозгового слоя надпочечников; глюкокортикоиды — гормоны коркового слоя надпочечника; сома-тотропный гормон гипофиза; тироксин и трийодтиронин — гормоны щитовидной железы. объединяют понятием «щнтринсулярные гормоны». Белки,УВ 17,17кДж(4,1 ккал); жиры 38,9 кДж(9,3 ккал) 4 Обмен воды и мин солей. Вода составляет 60 % массы тела взрслого человека, а у новорожденного — 75 %. Она является средой, в которой осуществляются процессы обмена веществ в клетках, органах и тканях. Непрерывное поступление воды в организм является одним из основных условий поддержания его жизнедеятельности. Основная масса (около 71 %) всей воды в организме входит в состав протоплазмы клеток, составляя так называемую внутриклеточную воду. Внеклеточная вода входит в состав тканевой, или интерстициальной, жидкости (около 21 %) и воды плазмы крови (около 8 %). Баланс воды складывается из ее потребления и выделения в виде напитков и чистой воды, образуется в процессе метаболизма при окислении белков, углеводов и жиров. Минимальная суточная потребность составляет около 1700 мл воды. Поступление воды регулируется ее потребностью, проявляющейся чувством жажды. Это чувство возникает при возбуждении питьевого центра гипоталамуса. Организм нуждается в постоянном поступлении не только воды, но и минеральных солей. Наиболее важное значение имеют натрий, калий, кальций. Натрий является основным катионом внеклеточных жидкостей. Натрий в количестве 3—6 г/сут поступает в организм в виде поваренной соли и всасывается преимущественно в тонком отделе кишечника. Он участвует в поддержании равновесия кислотно-основного состояния, осмотического давления внеклеточных и внутриклеточных жидкостей, принимает участие в формировании потенциала действия, оказывает влияние на деятельность практически всех систем организма. Баланс натрия в организме в основном поддерживается деятельностью почек. Калий является основным катионом внутриклеточной жидкости. В клетках содержится 98 % калия. Суточная потребность человека в калии составляет 2—3 г. Основным источником калия в пище являются продукты растительного происхождения. Всасывается калий в кишечнике. Поддержания мембранного потенциала, так и в генерации потенциала действия,в регуляции кислотно-основного состояния, поддержвает осмотическое давление в клетках. Регуляция его выведения осуществляется преимущественно почками. Кальций обладает высокой биологической активностью. Он является основным структурным компонентом костей скелета и зубов, где содержится около 99 % всего кальция. В сутки взрослый человек должен полу-^чать с пищей 800—1000 мг кальция. В большем количестве кальция нужда-гются дети ввиду интенсивного роста костей. Всасывается кальций преимущественно в двенадцатиперстной кишке в виде одноосновных солей фос--форной кислоты. 3/4кальция выводится пищеварительным трактом, 1/4-почками. Принимает участие в генерации потенциала действия, играет определенную роль в инициации мышечного сокращения, является необходимым компонентом свертывающей системы крови, повышает рефлекторную возбудимость спинного мозга и обладает симпатикотропным действием. В организме значительную роль в осуществлении жизнедеятельности играют и элементы, находящиеся в небольшом количестве. Их называют микроэлементами. К микроэлементам, относят железо, медь, цинк, кобальт, молибден, селен, хром, никель, олово, кремний, фтор, ванадий. Большинство биологически значимых микроэлементов входит в состав ферментов, витаминов, гормонов, дыхательных пигментов.Белки,УВ 17,17кДж(4,1 ккал); жиры 38,9 кДж(9,3 ккал) 5Превращение энергии в процессе обмена в-в. В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. Энергия расходуется не только на поддержание температуры тела и выполнение работы, но и на воссоздание структурных элементов клеток, обеспечение их жизнедеятельности, роста и развития организма. Теплообразование в организме имеет двухфазный характер. При окислении белков, жиров и углеводов одна часть энергии используется для синтеза АТФ, другая превращается в теплоту. Теплота, выделяющаяся непосредственно при окислении питательных веществ, получила название первичной теплоты. Аккумулированная в АТФ энергия используется в дальнейшем для механической работы, химических, транспортных, электрических процессов и в конечном счете тоже превращается в теплоту, обозначаемую вторичной теплотой. Для определения энергообразования в организме используют прямую калориметрию, непрямую калориметрию и исследование валового обмена. Прямая калориметрия основана на непосредственном учете в биокалориметрах количества тепла, выделенного организмом. Биокалориметр представляет собой герметизированную и хорошо теплоизолированную от внешней среды камеру. В камере по трубкам циркулирует вода. Тепло, выделяемое находящимся в камере человеком или животным, нагревает циркулирующую воду. По количеству протекающей воды и изменению ее температуры рассчитывают количество выделенного организмом тепла. Калориметры градиентного типа выполняются в форме костюма. Методы прямой калориметрии очень громоздки и сложны. Можно использовать косвенное, непрямое, определение теплообразования в организме по его газообмену — учету количества потребленного О2 и выделенного СО2 с последующим расчетом теплопродукции организма. Наиболее распространен способ Дугласа—Холдейна, при котором в течение 10—15 мин собирают выдыхаемый воздух в мешок из воздухонепроницаемой ткани (мешок Дугласа), укрепляемый на спине обследуемого. Он дышит через загубник, взятый в рот, или резиновую маску, надетую на лицо. В загубнике и маске имеются клапаны, устроенные так, что обследуемый свободно вдыхает атмосферный воздух, а выдыхает воздух в мешок Дугласа. Когда мешок наполнен, измеряют объем выдохнутого воздуха, в котором определяют количество О2 и СО2. Количество тепла, освобождающегося после потребления организмом 1 л О2, носит название калорического эквивалента кислорода. Дыхательным коэффициентом (ДК) называется отношение объема выделенного СО2 к объему поглощенного О2. ДК различен при окислении белков, жиров и углеводов. Длительное (на протяжении суток) опред-е газообмена дает возмоджность не только рассчитать теплопродукцию, но решить вопрос о том, за счет окис-я каких пит в-в шло теплообр-е. 6Основной обмен, его вел-на и факторы ее определяющие. Интенсивность окислительных процессов и превращение энергии зависят от индивидуальных особенностей организма (пол, возраст, масса тела и рост, условия и характер питания, мышечная работа, состояние эндокринных желез, нервной системы и внутренних органов — печени, почек, пищеварительного тракта и др.), а также от условий внешней среды (температура, барометрическое давление, влажность воздуха и его состав, воздействие лучистой энергии и др.). Энерготраты организма в таких стандартных условиях получили название основного обмена. Энерготраты в условиях основного обмена связаны с поддержанием Минимального необходимого для жизни клеток уровня окислительных процессов и с деятельностью постоянно работающих органов и систем — дыхательных мышц, сердца, почек, печени. Для определения основного обмена обследуемый должен находиться: 1) в состоянии мышечного покоя (положение лежа с расслабленной мускулатурой), не подвергаясь раздражениям, вызывающим эмоциональное напряжение; 2) натощак, т.е. через 12—16 ч после приема пищи; 3) при внешней температуре «комфорта» (18—20 °С), не вызывающей ощущения холода или жары. Основной обмен определяют в состоянии бодрствования. Для мужчины среднего возраста (примерно 35 лет), среднего роста (примерно 165 см) и со средней массой тела (примерно 70 кг) основной обмен равен 4,19 кДж (1 ккал) на 1 кг массы тела в час, или 7117 кДж (1700 ккал) в сутки. У женщин той же массы он примерно на 10 % ниже. Согласно формуле Дрейера, суточная вел-на основного об. в ккал(Н) сост-ет: Н=W/K*A, где W – масса тела,г; А – возраст чел-ка; К – конст,равная для муж 0,1015, а для жен – 0,1129. Если пересчитать интенсивность осн об на 1 кг массы тела, то у людей с разной массой тела и ростом она весьма различна. Если же произвести перерасчет интенсивности осн об на 1 ь2 повер-сти тела, полученные у разн жив и людей вел-ны разл-ся не столь резко. Согласно правилу повер-ти тела, затраты энергии теплокров-х жив пропорциональны вел-не повер-ти тела. Об относительности правила поверхности свидетельствует тот факт, что у двух индивидуумов с одинаковой поверхностью тела интенсивность обмена веществ может значительно различаться. Уровень окислительных процессов определяется не столько теплоотдачей с поверхности тела, сколько теплопродукцией, зависящей от биологических особенностей вида животных и состояния организма, которое обусловлено деятельностью нервной, эндокринной и других систем. После приема пищи интенсивность обмена веществ и энергетические затраты организма увеличиваются по сравнению с их уровнем в условиях основного обмена. Влияние приема пищи, усиливающее обмен веществ и энергетические затраты, получило название специфического динамического действия пищи. При белковой пище оно наиболее велико. Терморегуляция 149) Температура тела чел-ка, понятие об изотермии. Постоянство температуры тела, и особенно жизненно важных органов, — обязательное условие жизни для человека и теплокровных животных. Для человека и теплокровных животных снижение или повышение тем- пературы тела хотя бы на I °С означает резкое снижение уровня здоровья и работоспособности. Нормальной температурой тела для человека приня-то считать температуру при ее измерении в подмышечной впадине в пределах 36—37 °С. Регулируя гомеостаз по параметру температуры тела, организм использует для поддержания изотермии практически все системы и органы. Так, например, кровь, лимфа, тканевая жидкость выполняют функцию теплоносителей. Кровь между наружными покровами и внутренними органами, что меняет уровень теплоотдачи. Сокращения мышц увеличивают теплообразование. Потоотделение и дыхание способствуют испарению жидкости с поверхности тела и дыхательных путей. По типу терморегуляции различают гомойотермных, пойкилотермных, гетеротермных животных и животных с переходной формой регуляции температуры тела. Животных, температура тела которых поддерживается на постоянном уровне, называют гомойотермными, или теплокровными. Пойкилотермными, или холоднокровными(полностью зависит от погодных условий, времени года). Переходная форма терморегуляции. Температура тела этих животных зависит от температуры среды обитания, но всегда превышает ее на 10—12 °С. Гетеротермные, либо зимнеспящие или летнеспящие. В теле человека принято различать «ядро», температура которого сохраняется достаточно постоянной, и «оболочку», температура которой существенно колеблется в зависимости от температуры внешней среды. При этом область «ядра» сильно уменьшается при низкой внешней температуре и, наоборот, увеличивается при относительно высокой температуре окружающей среды. Поэтому справедливо говорить о том, что изо-J термия присуща главным образом внутренним органам и головному мозгу. Поверхность же тела и конечности, температура которых может изменять-! ся в зависимости от температуры окружающей среды, имеют различную температуру в зависимости от удаленности от «ядра» и степени защищенности одеждой. Температура тела у взрослого чел-ка в теч-ии суток не ост-ся постоянной и колебл-ся в пределах 0,5-0,7 С, в отдел-х случаях – 1С. 150) Роль хим-й терморег-ии. У чел-ка усил-е теплообр-я наступает вседствие увелич-я интенсивности об в-в. В условиях снижения температуры тела на несколько десятых градуса теплообразование в мышцах увеличивается, даже если человек находится в неподвижном состоянии. Рецепторы, воспринимающие холодовое раздражение, рефлекторно возбуждают мышцы, которые при этом непроизвольно сокращаются с небольшой амплитудой, но с высокой частотой, что внешне проявляется в виде дрожи (озноб). При этом значительно увеличивается уровень обмена веществ, потребление О2 и углеводов мышечной тканью, что и влечет за собой повышение теплообразования до 200 %. Образование тепла в организме за счет тонуса, дрожи или сокращений мышц называют сократительным термогенезом. Однако уровень теплообразования в организме гомойотермных животных зависит не только от мышечной активности, но и от величины основного обмена, а также его увеличения в связи с приемом пищи (специфическое динамическое действие пищи). |