фин.мен. Задача Решение
Скачать 0.62 Mb.
|
Решение: Уровень продаж, при котором чистая прибыль будет равна нулю, определим по формуле: , где FC – постоянные затраты; Р – цена; VC – переменные затраты; А – амортизация. А=ПС·На/100, где ПС – первоначальная стоимость оборудования; На – норма амортизации, которую определим по формуле: На=100/Т, где Т – срок использования оборудования. Получаем: На=100/4=25%; А=500000·25/100=125000 долл. Получаем: ед. Уровень продаж, при котором для инвестиций в размере 500 000 долл. ставка доходности (рассчитанной по чистой прибыли) составит 15%. Используем формулу: , где h - ставка доходности (рассчитанной по чистой прибыли); ЧП – чистая прибыль; IC – инвестиции. Определим необходимый размер чистой прибыли: долл. Объем продаж при этом определим по формуле: , где Ст – ставка налога на прибыль. Получаем: ед. или 548295,5×2=1096591 долл. Определим IRR, NPV и период окупаемости капиталовложений (рассчитанный обычным способом, так и на основе дисконтирования денежных потоков), если ожидаемый объем продаж составляет 600 000 единиц в год. Определим прибыль по формуле: П=Q·(P-VC)-FC, где Q – объем продаж; Р – цена единицы; VC – переменные затраты на единицу; FC – постоянные затраты. Получаем: П=600000·(2-1,2)-200000-125000=155000 долл. каждый год. Налог на прибыль составит: Нп=155000×34%/100=52700 долл. Чистая прибыль: Пч=155000-52700=102300 долл. Денежный поток составит сумму чистой прибыли и амортизации: ЧП=102300+125000=227300 долл. NPV определим по формуле: , где - положительные денежные потоки по годам n; i – ставка доходности; IC – инвестиции. Получаем: долл. Внутреннюю норму доходности (IRR) определим по формуле: , где i – норма дисконта (ia < IRR < ib); NPV – чистая текущая стоимость (NPVa > 0 > NPVb). Рассчитаем NPV для ставок 29% и 30%. долл.; долл. %. Срок окупаемости простой составит: РР=IC/СF=500000/227300=2,2 года. Дисконтированный срок окупаемости составит: Ток=IC/(NPV/n)=500000/(648936,6/4)=3,08 года. Можно сделать вывод о целесообразности реализации проекта, так как чистая дисконтированная стоимость больше 0, норма дисконта в 15% ниже внутренней нормы доходности в 29,09%, следовательно, проект при исходной норме доходности принесет положительный эффект. Определим уровень продаж, при котором NPV будет равна нулю. , денежный поток должен составить при этом: Х=500000/2,855=175132,7 долл. Чистая прибыль должна составить: ЧП=175132,7-125000(амортизация)=50132,7 долл. ед. или 501198×2=1002397 долл. График поступлений дисконтируемых амортизационных отчислений определим аналогично дисконтированию денежного потока и представим в таблице.
4. Для каждого из 4 проектов рассчитайте IRR, NPV и индекс рентабельности при ставке 10%. Посмотрите, как ранжирование отличается по каждому методу.
Решение: NPV определим по формуле: , где - положительные денежные потоки по годам n; i – ставка доходности; IC – инвестиции. Получаем: - проект А: ; - проект Б: ; - проект В: ; - проект Г: . Ранжирование по NPV в порядке убывания: 1.Проект В; 2.Проект А; 3.Проект Г; 4.Проект Б. Внутреннюю норму доходности (IRR) определим по формуле: , где i – норма дисконта (ia < IRR < ib); NPV – чистая текущая стоимость (NPVa > 0 > NPVb). Проект А. Рассчитаем NPV для ставок 13% и 14%. ; ; Проект Б. Рассчитаем NPV для ставок 15% и 16%. ; ; . Проект В. Рассчитаем NPV для ставок 50% и 51%. ; ; . Проект Г. Рассчитаем NPV для ставок 15% и 16%. ; ; . Ранжирование по IRR в порядке убывания: 1.Проект В; 2.Проект Г; 3.Проект Б; 4.Проект А. Определим индекс рентабельности по формуле: Получаем: - проект А: ; - проект Б: ; - проект В: ; - проект Г: . Ранжирование по PI в порядке убывания: 1.Проект Г; 2.Проект А; 3.Проект В; 4.Проект Б. Таким образом, видно, что наиболее привлекательным проектом по критерию NPV оптимальным является проект В, по критерию PI – проект Г, по критерию IRR - проект В. Анализ риска проекта 1. Корпорация рассматривает три возможных инвестиционных проекта на следующий год. Каждый проект рассчитан на один год, а доход от проекта зависит от состояния экономики в следующем году. Ориентировочные оценки доходности проектов приведены ниже:
1) Рассчитайте ожидаемую доходность каждого проекта, дисперсию, среднее квадратическое отклонение и коэффициент вариации. Решение: Ожидаемую доходность каждого проекта определим по формуле: dож=∑di×pi, где d – доходность; р – вероятность. Дисперсию определим по формуле: σ2=∑(di- dож)2×pi. Среднее квадратическое отклонение определим по формуле: . Коэффициент вариации определим по формуле: . Получаем: - для А: dож=0,25×10+0,5×14+0,25×16=13,5%; σ2=0,25×(10-13,5)2+0,5×(14-13,5)2+0,25×(16-13,5)2=4,75; %; %; - для В: dож=0,25×9+0,5×13+0,25×18=13,25%; σ2=0,25×(9-13,25)2+0,5×(13-13,25)2+0,25×(18-13,25)2=4,81; %; %; - для С: dож=0,25×14+0,5×12+0,25×10=12%; σ2=0,25×(14-12)2+0,5×(12-12)2+0,25×(10-12)2=7; %; |