Ответы к госэкзамену по ОЗЗ 2008. Закон О здравоохранении
Скачать 2.2 Mb.
|
б) экстенсивные - показатели удельного веса, структуры, характеризуют распределение явления на составные части, его внутреннюю структуру. Вычисляются экстенсивные показатели отношением части явления к целому и выражаются в процентах или долях единицы. Экстенсивные показатели используются для определения структуры явления и сравнительной оценки соотношения составляющих его частей. Экстенсивные показатели всегда взаимосвязаны между собой, т. к. их сумма всегда равна 100 процентам: так, при изучении структуры заболеваемости удельный вес отдельного заболевания может возрасти: - при истинном росте числа заболеваний - при одном и том же его уровне, если число других заболеваний снизилось - при снижении числа данного заболевания, если уменьшение числа других заболеваний происходит более быстрыми темпами. При анализе экстенсивный показатель следует применять с осторожностью и помнить, что им пользуются только для характеристики состава (структуры) явления в данный момент времени и в данном месте. Примеры использования в работе врача: лейкоцитарная формула; структура населения по полу, возрасту, социальному положению; структура заболеваний по нозологии; структура причин смерти. в) соотношения - представляют собой соотношение двух самостоятельных, независимых друг от друга, качественно разнородных величи, сопоставляемых только логически. Примеры использования в работе врача: показатели обеспеченности населения врачами, больничными койками; показатели, отражающие число лабораторных исследований на 1 врача и т.д. г) наглядности - применяются с целью более наглядного и доступного сравнения статистических величин. Показатели наглядности представляют удобный способ преобразования абсолютных, относительных или средних величин в легкую для сравнения форму. При вычислении этих показателей одна из сравниваемых величин приравнивается к 100 (или 1), а остальные величины пересчитываются соответственно этому числу. Показатели наглядности указывают, на сколько процентов или во сколько раз произошло увеличение или уменьшение сравниваемых величин. Показатели наглядности используются чаше всего для сравнения данных в динамике, чтобы представить закономерности изучаемого явления в более наглядной форме. При пользовании относительными величинами могут быть допущены некоторые ошибки: 1. иногда судят об изменении частоты явления на основе экстенсивных показателей, которые характеризуют структуру явления, а не его интенсивность. 2. нельзя складывать и вычитать статистические показатели, которые рассчитаны из совокупностей, имеющих разную численность, ибо это приводит к грубым искажениям показателя. 3. при расчете специальных показателей следует правильно выбирать знаменатель для расчета показателя: например, показатель послеоперационной летальности необходимо рассчитывать по отношению к оперированным, а не всем больным. 4. при анализе показателей следует учитывать фактор времени: нельзя сравнивать между собой показатели, вычисленные за различные периоды времени (показатель заболеваемости за год и за полугодие), что может привести к ошибочным суждениям. 5. нельзя сравнивать между собой общие интенсивные показатели, вычисленные из неоднородных по составу совокупностей, поскольку неоднородность состава среды может влиять на величину интенсивного показателя. 111. Показатели соотношения и наглядности. Методика вычисления, использование в здравоохранении – см. вопрос 110. 112. Графические изображения в статистике. Виды диаграмм, правила их построения. Результаты статистического исследования могут быть представлены в виде графических изображений, что позволяет более наглядно продемонстрировать полученные результаты и облегчает проведение анализа. Существует несколько видов графических изображений, наиболее часто используют диаграммы (линейные, радиальные, столбиковые, ленточные, гистограммы, секторные и др.), картограммы, картодиаграммы. При построении графических изображений необходимо соблюдать следующие правила: - данные на графике должны размещаться слева направо и снизу вверх; - обязательное условие при построении графика - соблюдение масштабности; - нулевые точки шкал при наличии возможности должны быть изображены на диаграмме - цифры, показывающие деление шкал, помещаются слева или внизу соответствующей шкалы; - линии, представляющие диаграмму изображаемого явления, следует делать иного вида, нежели вспомогательные линии; - на кривой, отражающей динамику явления, необходимо отметить все точки, соответствующие отдельным наблюдениям; - в диаграммах, показывающих структуру, должна быть оттенена как линия нулевая, так и 100-процентная; - изображенные графические величины должны иметь цифровые обозначения на самом графике или в прилагаемой к нему таблице; - символы, используемые при построении диаграммы (цвет, штриховка, фигуры, знаки), должны быть пояснены; - каждый график должен иметь четкое, краткое название, отражающее его содержание; - название диаграммы должно размешаться под рисунком. Виды диаграмм: а) линейные диаграммы - позволяют изображать динамику явления (изменение показателей во времени). Линейная диаграмма строится в системе прямоугольных координат, при ее построении следует учитывать соотношение между основанием и высотой - абсциссой х и ординатой у, основанное на принципе "золотого сечения": это соотношение должно быть 1,6:1. На горизонтальной оси (оси абсцисс) откладываются отрезки, обозначающие периоды времени. На вертикальной оси (оси ординат) откладываются размеры изучаемого явления. Обязательное условие при построении графика - масштабность. На одной диаграмме можно изобразить несколько линий, отличающихся друг от друга цветом, толщиной или формой пунктира. б) радиальные диаграммы (диаграммы полярных координат, линейно-круговые диаграммы, векторные диаграммы) - применяются для изображения сезонных (подекадных, помесячных, поквартальных) и других колебаний, имеющих замкнутый, циклический характер (за сутки, неделю и т.д.). Для их построения круг делится на столько секторов, на сколько частей разделен период времени, взятый для изучения явления (например, на 12 - при изучении помесячных колебаний в течение года; на 7 - при изучении явления за неделю). На каждом из радиусов с соблюдением масштабности отмечаются показатели, полученные точки соединяют прямыми линиями. Начало маркировки радиусов начинается с радиуса, соответствующего нулю градусов, и продолжается по часовой стрелке. в) столбиковые диаграммы - строятся по такому же принципу, как и линейные, в системе координат, с соблюдением масштабности, но в которых вертикально или горизонтально проводимым линиям соответствуют прямоугольники. Эти диаграммы используются для изображения сравнительной величины явления в какой-либо определенный промежуток времени, например, сравнительной численности населения по странам мира; обеспеченности населения врачами в разные годы и т.д. г) гистограммы - в виде прямоугольников, треугольников, фигур позволяют изобразить однородные статистические показатели, не связанные друг с другом. Эти диаграммы используются для графического изображения статистических величин, характеризующих статику явления в разных совокупностях. Они также строятся в системе прямоугольных координат с соблюдением масштабности. Например, гистограммы применяются для графического изображения уровней смертности в разных возрастных группах населения; для демонстрации показателей больничной летальности в различных стационарах города; для изображения распространенности туберкулеза в различных социально-бытовых группах населения и т.д. д) секторные диаграммы - используются для демонстрации структуры изучаемого явления, изображения части явления в целом. Они представляют собой круг, принимаемый за целое (100%), в котором отдельные секторы соответствуют частям изображаемого явления. Этот вид диаграмм применяется для графического изображения экстенсивных показателей. В секторных диаграммах секторы, изображающие отдельные части изучаемого явления, располагаются в порядке возрастания или убывания по движению часовой стрелки и имеют разный цвет или штриховку. е) внутристолбиковые диаграммы также могут применяться для изображения структуры явления. При этом высота столбика принимается за 100%, весь столбик делится на составные части, которые соответствуют долям явления в процентах ж) картограммы - это графические изображения, нанесенные на схемы географической карты, на которой различным цветом или штриховкой изображены степени распространенности явления по территории з) картодиаграммы - такие графические изображения, при построении которых на карту или схему карты изучаемой территории проставляются диаграммы (столбиковые, фигурные, линейные) 113. Вариационный ряд, его элементы, виды, правила построения – см. вопрос 114. 114. Средние величины, виды, методика вычисления. Использование в медицине. Средние величины дают обобщающую характеристику статистической совокупности по определенному изменяющемуся количественному признаку. Средняя величина характеризует весь ряд наблюдений одним числом, выражающим общую меру изучаемого признака. Она нивелирует случайные отклонения отдельных наблюдений и дает типичную характеристику количественного признака. Требования к средним величинам: 1) качественная однородность совокупности, для которой рассчитывается средняя величина - только тогда она будет объективно отображать характерные особенности изучаемого явления. 2) средняя величина должна основываться на массовом обобщении изучаемого признака, т.к. только тогда она выражает типичные размеры признака Средние величины получаются из рядов распределения (вариационных рядов). Вариационный ряд- ряд однородных статистических величин, характеризующих один и тот же количественный учетный признак, отличающихся друг от друга по своей величине и расположенных в определенном порядке (убывания или возрастания). Элементы вариационного ряда: а) варианта - v - числовое значение изучаемого меняющегося количественного признака. б) частота - p (pars) или f (frequency) - повторяемость вариант в вариационном ряду, показывающая, как часто встречается та или иная варианта в составе данного ряда. в) общее число наблюдений- n (numerus) - сумма всех частот: n=ΣΡ. Если общее число наблюдений более 30,статистическая выборка считается большой, если n меньше или равно 30 - малой. Вариационные ряды бывают: 1. в зависимости от значения варианты: а) прерывные (дискретные), состоящие из целых чисел б) непрерывные, когда значения вариант выражены дробным числом. В прерывных рядах смежные варианты отличаются друг от друга на целое число (число ударов пульса, число дыханий в минуту, число дней лечения). В непрерывных рядах варианты могут отличаться на любые дробные значения единицы. 2. в зависимости от частоты встречаемости признака: а) простой - ряд - каждая варианта встречается один раз, т.е. частоты равны единице. б) обычный - ряд, в котором варианты встречаются более одного раза. в) сгруппированный- ряд, в котором варианты объединены в группы по их величине в пределах определенного интервала с указанием частоты повторяемости всех вариант, входящих в группу. Сгруппированный вариационный ряд используют при большом числе наблюдений и больном размахе крайних значений вариант. Обработка вариационного ряда заключается в получении параметров вариационного ряда (средней величины, среднего квадратического отклонения и средней ошибки средней величины). 3. в зависимости от числа наблюдений: а) четные и нечетные б) большой (при числе наблюдений больше 30) и малый (если число наблюдений меньше или равно 30) Виды средних величин: а) мода (Мо) - величина признака, чаще других встречающаяся в совокупности. За моду принимают варианту, которой соответствует наибольшее количество частот вариационного ряда. б) Медиана (Me) - величина признака, занимающая срединное значение в вариационном ряду. Она делит вариационный ряд на две равные части. На величину моды и медианы не оказывают влияния числовые значения крайних вариант, имеющихся в вариационном ряду. Они не всегда могут точно характеризовать вариационный ряд и применяются в медицинской статистике относительно редко. Более точно характеризует вариационный ряд средняя арифметическая величина. в) Средняя арифметическая(М, или ) - рассчитывается на основе всех числовых значений изучаемого признака. Реже применяются другие средние величины: средняя геометрическая (при обработке результатов титрования антител, токсинов, вакцин); средняя квадратическая (при определении среднего диаметра среза клеток, результатов накожных иммунологических проб); средняя кубическая (для определения среднего объема опухолей) и другие. В простом вариационном ряду, где варианты встречаются только по одному разу, вычисляется средняя арифметическая простая по формуле: , где V - числовые значения вариант, n - число наблюдений, Σ - знак суммы В обычном вариационном ряду вычисляется средняя арифметическая взвешенная по формуле: , где V - числовые значения вариант, р - частота встречаемости вариант, n - число наблюдений. Средние величины являются важными обобщающими характеристиками совокупности. Однако за ними скрываются индивидуальные значения признака. Средние величины не показывают изменчивости, колеблемости признака. Если вариационный ряд более компактен, менее рассеян и все отдельные значения расположены вокруг средней, то средняя величина дает более точную характеристику данной совокупности. Если вариационный ряд растянут, отдельные значения значительно отклоняются от средней, т.е. имеется большая вариабельность количественного признака, то средняя менее типична, хуже отражает в целом весь ряд. Одинаковые по величине средние могут быть получены из рядов с различной степенью рассеяния, поэтому для характеристики вариационного ряда, помимо средней величины, необходима другая характеристика, позволяющая оценить степень его колеблемости. Простыми показателями, характеризующими разнообразие признака в изучаемой совокупности, являются а) лимит - минимальное и максимальное значение количественного признака б) амплитуда - разность между наибольшим и наименьшим значением вариант. Применение средних величин: а) для характеристики физического развития (рост, вес, окружность груди, динамометрия) б) для оценки состояния здоровья человека путем анализа физиологических, биохимических параметров организма (уровня АД, ЧСС, температуры тела) в) для анализа деятельности медицинских организаций (среднее число дней работы койки в году и т.д.) г) для оценки работы врачей (среднее число посещений на одного врача, среднее число хирургических операций, среднечасовая нагрузка врача на приеме в поликлинике) 115. Характеристика разнообразия изучаемого признака. Среднее квадратическое отклонение, методика вычисления. Приближенный метод оценки колеблемости вариационного ряда - определение лимита и амплитуды, однако не учитывают значений вариант внутри ряда. Основной общепринятой мерой колеблемости количественного признака в пределах вариационного ряда является среднее квадратическое отклонение (σ - сигма). Чем больше среднее квадратическое отклонение, тем степень колеблемости данного ряда выше. Методика расчета среднего квадратического отклонения включает следующие этапы: 1. Находят среднюю арифметическую величину (Μ). 2. Определяют отклонения отдельных вариант от средней арифметической (d=V-M). В медицинской статистике отклонения от средней обозначаются как d (deviate). Сумма всех отклонений равняется нулю. 3. Возводят каждое отклонение в квадрат d2. 4. Перемножают квадраты отклонений на соответствующие частоты d2*p. 5. Находят сумму произведений ( d2*p) 6. Вычисляют среднее квадратическое отклонение по формуле: при n больше 30,или при n меньше либо равно 30, где n - число всех вариант. Значение среднего квадратичного отклонения: 1. Среднее квадратическое отклонение характеризует разброс вариант относительно средней величины (т.е. колеблемость вариационного ряда). Чем больше сигма, тем степень разнообразия данного ряда выше. 2. Среднее квадратичное отклонение используется для сравнительной оценки степени соответствия средней арифметической величины тому вариационному ряду, для которого она вычислена. Вариации массовых явлений подчиняются закону нормального распределения. Кривая, отображающая это распределение, имеет вид плавной колоколообразной симметричной кривой (кривая Гаусса). Согласно теории вероятности в явлениях, подчиняющихся закону нормального распределения, между значениями средней арифметической и среднего квадратического отклонения существует строгая математическая зависимость. Теоретическое распределение вариант в однородном вариационном ряду подчиняется правилу трех сигм. Если в системе прямоугольных координат на оси абсцисс отложить значения количественного признака (варианты), а на оси ординат - частоты встречаемости вариант в вариационном ряду, то по сторонам от средней арифметической равномерно располагаются варианты с большими и меньшими значениями. Установлено, что при нормальном распределении признака: - 68,3% значений вариант находится в пределах М1 - 95,5% значений вариант находится в пределах М2 - 99,7% значений вариант находится в пределах М3 3. Среднее квадратическое отлонение позволяет установить значения нормы для клинико-биологических показателей. В медицине интервал М1 обычно принимается за пределы нормы для изучаемого явления. Отклонение оцениваемой величины от средней арифметической больше, чем на 1 указывает на отклонение изучаемого параметра от нормы. 4. В медицине правило трех сигм применяется в педиатрии для индивидуальной оценки уровня физического развития детей (метод сигмальных отклонений), для разработки стандартов детской одежды 5. Среднее квадратическое отклонение необходимо для характеристики степени разнообразия изучаемого признака и вычисления ошибки средней арифметической величины. Величина среднего квадратического отклонения обычно используется для сравнения колеблемости однотипных рядов. Если сравниваются два ряда с разными признаками (рост и масса тела, средняя длительность лечения в стационаре и больничная летальность и т.д.), то непосредственное сопоставление размеров сигм невозможно, т.к. среднеквадратическое отклонение - именованная величина, выраженная в абсолютных числах. В этих случаях применяют коэффициент вариации (Cv), представляющий собой относительную величину: процентное отношение среднего квадратического отклонения к средней арифметической. Коэффициент вариации вычисляется по формуле: Чем выше коэффициент вариации, тем большая изменчивость данного ряда. Считают, что коэффициент вариации свыше 30 % свидетельствует о качественной неоднородности совокупности. 116. Ошибка репрезентативности, методика вычисления ошибки средней и относительной величины. В статистике выделяют два основных метода исследования - сплошной и выборочный. При проведении выборочного исследования обязательным является соблюдение следующих требований: репрезентативность выборочной совокупности и достаточное число единиц наблюдений. При выборе единиц наблюдения возможны ошибки смещения, т.е. такие события, появление которых не может быть точно предсказуемым. Эти ошибки являются объективными и закономерными. При определении степени точности выборочного исследования оценивается величина ошибки, которая может произойти в процессе выборки - случайная ошибка репрезентативности (m) - является фактической разностью между средними или относительными величинами, полученными при проведении выборочного исследования и аналогичными величинами, которые были бы получены при проведении исследования на генеральной совокупности. Оценка достоверности результатов исследования предусматривает определение: 1. ошибки репрезентативности 2. доверительных границ средних (или относительных) величин в генеральной совокупности 3. достоверности разности средних (или относительных) величин (по критерию t) |