Главная страница
Навигация по странице:

  • 37. Биохимия питания. Основные компоненты пищи человека, их биороль, суточная потребность в них. Незаменимые компоненты пищи.

  • Минеральные вещества

  • Незаменимые вещества организма

  • Незаменимые аминокислоты.

  • Незаменимые жирные кислоты.

  • 38. Белковое питание. Биологическая ценность белков. Азотистый баланс. Полноценность белкового питания, нормы белка в питании, белковая недостаточность. Азотистый баланс

  • Полноценность белкового питания

  • Нормы белка в питании

  • Белковая недостаточность

  • Значение биохимии в подготовке врача. Биологическая химия


    Скачать 8.33 Mb.
    НазваниеЗначение биохимии в подготовке врача. Биологическая химия
    АнкорBiokhimia.docx
    Дата28.01.2017
    Размер8.33 Mb.
    Формат файлаdocx
    Имя файлаBiokhimia.docx
    ТипДокументы
    #851
    страница10 из 39
    1   ...   6   7   8   9   10   11   12   13   ...   39

    36. Особенности синтеза и процессинга секретируемых белков (на примере коллагена и инсулина).

    Схема биосинтеза инсулина в β-клетках островков Лангерханса. ЭР - эндоплазматический ретикулум. 1 - образование сигнального пептида; 2 - синтез препроинсулина; 3 - отщепление сигнального пептида; 4 - транспорт проинсулина в аппарат Гольджи; 5 - превращение проинсулина в инсулин и С-пептид и включение инсулина и С-пептида в секреторные гранулы; 6 - секреция инсулина и С-пептида.инсулин.jpg

    Биосинтез инсулинавключает образование двух неактивных предшественников, препроинсулина и проинсулина, которые в результате последовательного протеолиза превращаются в активный гормон. Биосинтез препроинсулина начинается с образования сигнального пептида на полирибосомах, связанных с ЭР. Сигнальный пептид проникает в просвет ЭР и направляет поступление в просвет ЭР растущей полипептидной цепи. После окончания синтеза препроинсулина сигнальный пептид, включающий 24 аминокислотных остатка, отщепляется.

    Проинсулин (86 аминокислотных остатков) поступает в аппарат Гольджи, где под действием специфических протеаз расщепляется в нескольких участках с образованием инсулина (51 аминокислотный остаток) и С-пептида, состоящего из 31 аминокислотного остатка.

    Инсулин и С-пептид в эквимолярных количествах включаются в секреторные гранулы. В гранулах инсулин соединяется с цинком, образуя димеры и гексамеры. Зрелые гранулы сливаются с плазматической мембраной, и инсулин и С-пептид секретируются во внеклеточную жидкость в результате экзоцитоза. После секреции в кровь олигомеры инсулина распадаются. Т1/2 инсулина в плазме крови составляет 3-10 мин, С-пептида - около 30 мин.

    Разрушение инсулина происходит под действием фермента инсулиназы в основном в печени и в меньшей степени в почках.
    Синтез и созревание коллагена - сложный многоэтапный процесс, начинающийся в клетке, а завершающийся в межклеточном матриксе. Синтез и созревание коллагена включают в себя целый ряд посттрансляционных изменений:

    гидроксилирование пролина и лизина с образованием гидроксипролина (Hyp) и гидроксилизина (Hyl);

    гликозилирование гидроксилизина;

    частичный протеолиз - отщепление "сигнального" пептида, а также N- и С-концевых пропептидов;

    образование тройной спирали.

    Синтез коллагена регулируется разными способами. Прежде всего, сам коллаген и N-npo-пептиды после своего отщепления тормозят трансляцию коллагена по принципу отрицательной обратной связи. Аскорбиновая кислота стимулирует синтез коллагена и протеогликанов, а также пролиферацию фибробластов.

    Особую роль в регуляции синтеза коллагена играют гормоны. Глюкокортикоиды тормозят синтез коллагена, во-первых, путём снижения уровня мРНК проколлагена, а во-вторых - ингибированием активности ферментов пролилилизилгидроксилазы. Недостаточное гидроксилирование остатков пролина и лизина повышает чувствительность коллагена к действию коллагеназы и неспецифических протеаз. Макроскопически угнетающее действие глюкокортикоидов на синтез коллагена проявляется уменьшением толщины дермы, а также атрофией кожи в местах продолжительного парентерального введения этих гормонов.

    На синтез коллагена влияют также половые гормоны, рецепторы к которым обнаружены не только в строме половых органов, но и в фиб-робластах других органов и тканей. Обмен коллагена в матке находится под контролем половых гормонов. Синтез коллагена кожи зависит от содержания эстрогенов, что подтверждает тот факт, что у женщин в менопаузе снижается содержание коллагена в дерме.

    37. Биохимия питания. Основные компоненты пищи человека, их биороль, суточная потребность в них. Незаменимые компоненты пищи.

    Полноценное питание должно содержать:

    -источники энергии (углеводы, жиры, белки); 

    -незаменимые аминокислоты; 

    -незаменимые жирные кислоты; 

    -витамины; 

    -неорганические (минеральные) кислоты); 

    -клетчатку; 

    2О.Установлено, что при умеренной физической нагрузке в течение одного часа, потери воды составляют 1,5-2 л при температуре 20-25 градусов. Следовательно, восполнение жидкости после нагрузки является важным средством восстановления. 

    Углеводы, жиры и белки являются макропитательными веществами. Их потребление зависит от роста, возраста и пола человека и определяется в граммах. Минимальное потребление углеводов составляет 50-100 г.

    Углеводы составляют основной источник энергии в питании человека - самая дешевая пища. В развитых странах около 40 % потребления углеводов приходится на рафинированные сахара, а 60 % составляет крахмал. В менее развитых странах доля крахмала возрастает. За счет углеводов образуется основная часть энергии в организме человека.

    Жиры - это один из основных источников энергии. Перевариваются в желудочно-кишечном тракте (ЖКТ) гораздо медленнее, чем углеводы, поэтому лучше способствуют возникновению чувства сытости. Триглицериды растительного происхождения являются не только источником энергии, но и незаменимымых жирных кислот: линолевой и линоленовой. Не рекомендуем употреблять больше 80-100 г и меньше 25-30 г жира в сутки, так как при пониженном содержании жира в рационе пострадают наша кожа и волосы, снизится сопротивляемость инфекциям и нарушится обмен витаминов A., D, Е, К.

    Белки - энергетическая функция не является для них основной. Белки - это исочники незаменимых и заменимых аминокислот, а также предшественники биологически активных веществ в организме. Однако при окислении аминокислот образуется энергия. Хотя она и невелика, но составляет некоторую часть энергетического рациона. Потребность организма взрослого человека, ведущего активный образ жизни составляет 1,6— 2,2 г на 1 кг массы тела.

    Минеральные вещества.

    За один прием пищи организм может усваивать до 30-50 г белка, поэтому суточное количество белка лучше распределять равномерно на 4-6 приемов пищи, так как меньшие количества продукта лучше усваиваются и более эффективно используются организмом.

    Макроэлементы содержатся в организме в больших количествах, суточная потребность в них колеблется от 0,4 до 5-7 г. Макроэлементы входят в состав тканей, мышц, костей, крови; обеспечивают солевой и ионный баланс жидкостей организма. К ним относятся кальций, фосфор, магний, натрий, калий, хлор и сера.

    Микроэлементы — это вещества, содержание которых в организме составляет 1 мг на 1 кг массы тела и меньше, суточная потребность составляет 10-20 мг. Микроэлементы входят в состав гемоглобина, витамина В12, гормонов и ферментов. 14 микроэлементов признаны жизненно необходимыми нашему организму: железо, медь, марганец, цинк, кобальт, род, фтор, хром, молибден, ваннадий, никель, олово, кремний, селен.

    Незаменимые вещества организма

    -Витамины. 

    -Аминокислоты. 

    -Полиненасыщенные жирные кислоты. 

    -Неорганические вещества (минеральные элементы). 

    -Клетчатка. 

    Клетчатка. 
    Компонент неутилизируемых пищевых волокон. В состав клетчатки входят целлюлоза, гемицеллюлоза, лигнин, пектин. Эти вещества содержатся во фруктах, овощах, необработанном зерне. Не переваривается в желудочно-кишечном тракте.

    Значение клетчатки для питания организма следующее.

    -Регулирует перистальтику кишечника. 

    -Участвует в формировании каловых масс. 

    -Способствует развитию чувства насыщения при приеме пищи. 

    -Создает необходимые условия для функционирования нормальной микрофлоры кишечника. 

    -Стимулирует выведение холестерина с желчью. 

    -Уменьшает и задерживает всасывание глюкозы (важно для больных сахарным дибетом). 

    -Является сорбентм для токсических веществ. 

    Незаменимые аминокислоты. 
    Это такие аминокислоты, которые не синтезируются в организме, а должны поступать извне: Триптофан (суточная потребность 0,5 г в сутки), треонин, изолейцин, лизин, валин, лейцин (суточная потребность около 2 г), фенилаланин (сут.потр.около 2 г), метионин (сут.потр.около 2 г). аргинин незаменим только у детей.

    Пищевые белки сильно отличаются по аминокислотному составу. Растительные белки содержат неполный набор аминокислот и в несвойственных нашему организму соотношениях.

    Животные белки имеют хорошие химические характеристики и высокую биологическую ценность. Организм хорошо переваривает животные белки и эффективно использует образующиеся при этом аминокислоты.

    Белки растительного происхождения имеют низкую химическую ценность. В белках какого-либо одного растения могут отсутствовать одна или несколько аминокислот. Поэтому организм должен получать разнообразную растительную пищу. Белки зерен злаков полностью не перевариваются, так как они защищены оболочкой, состоящей из целлюлозы, которая не расщепляется пищеварительными ферментами желудочно-кишечного тракта.

    Незаменимые жирные кислоты. 
    К ним относятся линолевая и линоленовая кислоты. Они не синтезируются в организме человека и поэтому должны поступать с пищей. Обычно мы не испытываем в них недостатка, так как они содержатся в растительных продуктах (маслах), а также в рыбьем и курином жирах.

    В организме незаменимые жирные кислоты входят в состав клеточных мембран, а также являются предшественниками для синтеза биологически активных веществ, таких, как простагландины. Линолевая и линоленовая кислоты являются непосредственными предшественниками арахидоновой кислоты. Именно из арахидоновой кислоты синтезируются простагландины, тромбоксаны и лейкотриены.

    Простагландины - это 20-углеродные жирные кислоты, содержащие пятичленное углеводородное кольцо. Различают несколько групп простагландинов, которые отличаются друг от друга наличием кетоносвой и гидроксильной групп в 9-м и 11-м положениях.

    Предшественники простагландинов высвобождаются из фосфолипидов мембран (непищевые!) и расщепляются под действием фермента фосфолипазы-А2. Это регуляторная стадия в биосинтезе простагландинов. С помощью этой стадии регулируется количество субстрата, который подвергается последующему действию фермента циклооксигеназы.

    Кортикостероиды ингибируют синтез простагландинов, угнетая фермент фосфолипазу-А2. Этим можно объяснить противовоспалительное действие кортикостероидов.

    Простагландины действуют в тех клетках, где они синтезируются. Характер действия простагландина зависит от типа клетки. В этом заключается принципиальное отличие простагландинов от гормонов.

    Физиологические эффекты простагландинов:

    -простагландины усиливают воспалительные процессы;

    -регулируют приток крови к определенному органу;

    -моделируют синаптическую передачу.

    38. Белковое питание. Биологическая ценность белков. Азотистый баланс. Полноценность белкового питания, нормы белка в питании, белковая недостаточность.

    Азотистый баланс

    Аминокислоты (свободные и в составе белков) содержат почти 95% всего азота, поэтому именно они поддерживают азотистый баланс организма. Азотистый баланс - разница между количеством азота, поступающего с пищей, и количеством выделяемого азота (преимущественно в виде мочевины и аммонийных солей). Если количество поступающего азота равно количеству выделяемого, то наступает азотистое равновесие. Такое состояние бывает у здорового человека при нормальном питании. Азотистый баланс может быть положительным (азота поступает больше, чем выводится) у детей, а также у пациентов, выздоравливающих после тяжёлых болезней. Отрицательный азотистый баланс (выделение азота преобладает над его поступлением) наблюдают при старении, голодании и во время тяжёлых заболеваний.

    При безбелковой диете азотистый баланс становится отрицательным. Соблюдение подобной диеты в течение недели приводит к тому, что количество выделяемого азота перестаёт увеличиваться и стабилизируется примерно на величине 4 г/сут. Такое количество азота содержится в 25 г белка. Значит, при белковом голодании в сутки в организме расходуется около 25 г собственных белков тканей. Минимальное количество белков в пище, необходимое для поддержания азотистого равновесия, соответствует 30-50 г/cyt, оптимальное же количество при средней физической нагрузке составляет ∼100-120 г/сут.

    Полноценность белкового питания

    В ходе эволюции человек утратил способность синтезировать почти половину из двадцати аминокислот, входящих в состав белков. К их числу относят те аминокислоты, синтез которых включает много стадий и требует большого количества ферментов, кодируемых многими генами. Следовательно, те аминокислоты, синтез которых сложен и неэкономичен для организма, очевидно, выгоднее получать с пищей. Такие аминокислоты называют незаменимыми. К ним относят фенилаланин, метио-нин, треонин, триптофан, валин, лизин, лейцин, изолейцин.

    Две аминокислоты - аргинин и гистидин - у взрослых образуются в достаточных количествах, однако детям для нормального роста организма необходимо дополнительное поступление этих аминокислот с пищей. Поэтому их называют частично заменимыми. Две другие аминокислоты - тирозин и цистеин - условно заменимые, так как для их синтеза необходимы незаменимые аминокислоты. Тирозин синтезируется из фенилаланина, а для образования цистеина необходим атом серы метионина.

    Остальные аминокислоты легко синтезируются в клетках и называются заменимыми. К ним относят глицин, аспарагиновую кислоту, аспарагин, глутаминовую кислоту, глутамин, серии, пролин, аланин.

    Как было показано выше, основным источником аминокислот для клеток организма являются белки пищи. В различных пищевых продуктах содержание белка колеблется в широких пределах

    Распространённые продукты растительного происхождения содержат мало белка (кроме гороха и сои). Наиболее богаты белками продукты животного происхождения (мясо, рыба, сыр). Белки не являются незаменимыми пищевыми факторами, они являются источниками содержащихся в них незаменимых аминокислот, необходимых для нормального питания.

    Питательная ценность белка зависит от его аминокислотного состава и способности усваиваться организмом. Растительные белки, особенно пшеницы и других злаковых, полностью не перевариваются, так как защищены оболочкой, состоящей из целлюлозы и других полисахаридов, которые не гидролизуются пищеварительными ферментами. Некоторые белки по аминокислотному составу близки к белкам тела человека, но не используются в качестве пищевых, так как имеют фибриллярное строение, малорастворимы и не расщепляются протеазами ЖКТ. К ним относят белки волос, шерсти, перьев и другие. Если белок содержит все незаменимые аминокислоты в необходимых пропорциях и легко подвергается действию протеаз, то биологическая ценность такого белка условно принимается за 100, и он считается полноценным. К таким относят белки яиц и молока. Белки мяса говядины имеют биологическую ценность 98. Растительные белки по биологической ценности уступают животным, так как труднее перевариваются и бедны лизином, метионином и триптофаном. Однако при определённой комбинации растительных белков организм можно обеспечить полной и сбалансированной смесью аминокислот. Так, белки кукурузы (биологическая ценность - 36) содержат мало лизина, но достаточное количество триптофана. А белки бобов богаты лизином, но содержат мало триптофана. Каждый из этих белков в отдельности является неполноценным. Однако смесь бобов и кукурузы содержит необходимое человеку количество незаменимых аминокислот.

    Нормы белка в питании

    Для поддержания азотистого равновесия достаточно употреблять 30-50 г белков в сутки. Однако такое количество не обеспечивает сохранения работоспособности и здоровья человека. Принятые нормы белкового питания для взрослых и детей учитывают климатические условия, профессию, условия труда и другие факторы. Взрослый человек при средней физической нагрузке должен получать 100-120 г белков в сутки. При тяжёлой физической работе эта норма увеличивается до 130-150 г. Детям до 12 лет достаточно 50-70 г белков в сутки. При этом подразумевается, что в пишу входят разнообразные белки животного и растительного происхождения.

    Белковая недостаточность

    Известно, что даже длительное исключение из рациона человека жиров или углеводов не вызывает тяжёлых расстройств здоровья. Однако безбелковое питание (особенно продолжительное) вызывает серьёзные нарушения обмена и неизбежно заканчивается гибелью организма. Исключение даже одной незаменимой аминокислоты из пищевого рациона ведёт к неполному усвоению других аминокислот и сопровождается развитием отрицательного азотистого баланса, истощением, остановкой роста и нарушениями функций нервной системы.

    Так, при отсутствии цистеина (или цистина) возникал острый некроз печени, гистидина - катаракта; отсутствие метионина приводило к анемии, ожирению и циррозу печени, облысению и геморрагии в почках. Исключение лизина из рациона молодых крыс сопровождалось анемией и внезапной гибелью (этот синдром отсутствовал у взрослых животных).

    Недостаточность белкового питания приводит к заболеванию, получившему в Центральной Африке название "квашиоркор", что в переводе означает "золотой (или красный) мальчик". В настоящее время это название часто используют и в других частях света при сходных симптомах. Заболевание развивается у детей, которые лишены молока и других животных белков, а питаются исключительно растительной пищей, включающей бананы, таро, просо и, чаще всего, кукурузу. Квашиоркор характеризуется задержкой роста, анемией, гипопротеинемией (часто сопровождающейся отёками), жировым перерождением печени. У лиц негроидной расы волосы приобретают красно-коричневый оттенок. Часто это заболевание сопровождается атрофией клеток поджелудочной железы. В результате нарушается секреция панкреатических ферментов и не усваивается даже то небольшое количество белков, которое поступает с пищей. Происходит поражение почек, вследствие чего резко увеличивается экскреция свободных аминокислот с мочой. Без лечения смертность детей составляет 50-90%. Даже если дети выживают, длительная недостаточность белка приводит к необратимым нарушениям не только физиологических функций, но и умственных способностей. Заболевание исчезает при своевременном переводе больного на богатую белком диету, включающую большие количества мясных и молочных продуктов. Один из путей решения проблемы - добавление в пищу препаратов лизина.
    1   ...   6   7   8   9   10   11   12   13   ...   39


    написать администратору сайта